Medical Policy
Molecular Testing in the Management of Pulmonary Nodules

Table of Contents
- Policy: Commercial
- Coding Information
- Information Pertaining to All Policies
- Policy: Medicare
- Description
- References
- Authorization Information
- Policy History

Policy Number: 029
BCBSA Reference Number: 2.04.142
NCD/LCD:
- Local Coverage Determination (LCD): MolDX-CDD: Percepta® Bronchial Genomic Classifier (L36854)
- Local Coverage Determination (LCD): MolDX: Xpresys Lung (L37031)

Related Policies
None

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity

Plasma-based proteomic screening, including but not limited to BDX-XL2 in patients with undiagnosed pulmonary nodules detected by computed tomography is considered INVESTIGATIONAL.

Gene expression profiling on bronchial brushings, including but not limited to Percepta® Bronchial Genomic Classifier, in patients with indeterminate bronchoscopy results from undiagnosed pulmonary nodules is considered INVESTIGATIONAL.

Medicare HMO BlueSM and Medicare PPO BlueSM Members

Medical necessity criteria and coding guidance for Medicare Advantage members living in Massachusetts can be found through the links below.

Local Coverage Determination (LCD): MolDX: Xpresys Lung (L37031)

Local Coverage Determination (LCD): MolDX-CDD: Percepta® Bronchial Genomic Classifier (L36854)

For medical necessity criteria and coding guidance for Medicare Advantage members living outside of Massachusetts, please see the Centers for Medicare and Medicaid Services website for information regarding your specific jurisdiction at https://www.cms.gov.
Prior Authorization Information

Inpatient
- For services described in this policy, precertification/preauthorization is required for all products if the procedure is performed inpatient.

Outpatient
- For services described in this policy, see below for products where prior authorization might be required if the procedure is performed outpatient.

<table>
<thead>
<tr>
<th>Product</th>
<th>Coverage Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Managed Care (HMO and POS)</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Medicare HMO BlueSM</td>
<td>Prior authorization is not required.</td>
</tr>
<tr>
<td>Medicare PPO BlueSM</td>
<td>Prior authorization is not required.</td>
</tr>
</tbody>
</table>

CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

CPT Codes

The following CPT code is considered investigational for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue:

<table>
<thead>
<tr>
<th>CPT codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0092U</td>
<td>Oncology (lung), three protein biomarkers, immunoassay using magnetic nanosensor technology, plasma, algorithm reported as risk score for likelihood of malignancy</td>
</tr>
</tbody>
</table>

The following CPT code is considered investigational for Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity:

<table>
<thead>
<tr>
<th>CPT codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0080U</td>
<td>Oncology (lung), mass spectrometric analysis of galectin-3-binding protein and scavenger receptor cysteine-rich type 1 protein M130, with five clinical risk factors (age, smoking status, nodule diameter, nodule-spiculation status and nodule location), utilizing plasma, algorithm reported as a categorical probability of malignancy</td>
</tr>
</tbody>
</table>

Description

Pulmonary Nodules

Pulmonary nodules are a common clinical problem that may be found incidentally on a chest x-ray or computed tomography (CT) scan or during lung cancer screening studies of smokers. The primary question after the detection of a pulmonary nodule is the probability of malignancy, with subsequent management of the nodule based on various factors such as the radiographic characteristics of the nodules (eg, size, shape, density) and patient factors (eg, age, smoking history, previous cancer history, family history, environmental/occupational exposures). The key challenge in the diagnostic workup for pulmonary nodules is appropriately ruling in patients for invasive diagnostic procedures and ruling out patients who should forgo invasive diagnostic procedures. However, due to the low positive predictive
value of pulmonary nodules detected radiographically, many unnecessary invasive diagnostic procedures and/or surgeries are performed to confirm or eliminate the diagnosis of lung cancer.

Proteomics
Proteomics is the study of the structure and function of proteins. The study of the concentration, structure, and other characteristics of proteins in various bodily tissues, fluids, and other materials has been proposed as a method to identify and manage various diseases, including cancer. In proteomics, multiple test methods are used to study proteins. Immunoassays use antibodies to detect the concentration and/or structure of proteins. Mass spectrometry is an analytic technique that ionizes proteins into smaller fragments and determines mass and composition to identify and characterize them.

Plasma-Based Proteomic Screening for Pulmonary Nodules
Plasma-based proteomic screening has been investigated to risk-stratify pulmonary nodules as likely benign to increase the number of patients who undergo serial CT scans of their nodules (active surveillance), instead of invasive procedures such as CT-guided biopsy or surgery. Additionally, proteomic testing may also determine a likely malignancy in clinically low-risk or intermediate-risk pulmonary nodules, thereby permitting earlier detection in a subset of patients.

Xpresys Lung and BDX-XL2 are plasma-based proteomic screening tests that measures the relative abundance of proteins from multiple disease pathways associated with lung cancer using an analytic technique called multiple reaction monitoring mass spectroscopy. The role of the tests is to aid physicians in differentiating likely benign from likely malignant nodules. If the test yields a likely benign result, patients may choose active surveillance via serial CT scans to monitor the pulmonary nodule. If the test yields a likely malignant result, invasive diagnostic procedures would be indicated. The test is therefore only used in the management of pulmonary nodules to rule in or out invasive diagnostic procedures and does not diagnose lung cancer.

Gene expression profiling
GEP is the measurement of the activity of genes within cells. Messenger RNA serves as the bridge between DNA and functional proteins. Multiple molecular techniques such as Northern blots, ribonuclease protection assay, in situ hybridization, spotted complementary DNA arrays, oligonucleotide arrays, reverse transcriptase polymerase chain reaction, and transcriptome sequencing are used in GEP. An important role of GEP in molecular diagnostics is to detect cancer-associated gene expression of clinical samples to assess for the risk for malignancy.

Gene Expression Profiling for an Indeterminate Bronchoscopy Result
The Percepta Bronchial Genomic Classifier is a 23-gene, GEP test that analyzes genomic changes in the airways of current or former smokers to assess a patient's risk of having lung cancer, without the direct testing of a pulmonary nodule. The test is indicated for current and former smokers following an indeterminate bronchoscopy result to determine the subsequent management of pulmonary nodules (e.g., active surveillance or invasive diagnostic procedures), and does not diagnose lung cancer.

Summary
Plasma-based proteomic screening and gene expression profiling of bronchial brushing are molecular tests available in the diagnostic workup of pulmonary nodules. To rule out malignancy, invasive diagnostic procedures such as computed tomography-guided biopsies, bronchoscopies, or video-assisted thoracoscopic are often required, but each carry procedure-related complications ranging from post procedure pain to pneumothorax. Molecular diagnostic tests have been proposed to aid in risk-stratifying patients to eliminate or necessitate the need for subsequent invasive diagnostic procedures.

For individuals with undiagnosed pulmonary nodules detected by computed tomography who receive plasma-based proteomic screening, the evidence includes prospective cohorts and prospective-retrospective studies. The relevant outcomes are overall survival, disease-specific survival, test accuracy and validity, morbid events, hospitalizations, and resource utilization. Clinical validation studies were identified for two versions of a proteomic classifier. This classifier has undergone substantial evolution, from a 13-protein assay to a 2 protein assay integrated with clinical factors. Because of this evolution, the
The most relevant studies are with the most recent version two. One validation study on the version two has been identified. The classifier has been designed to have high specificity for malignant pulmonary nodules, and the validation study showed a specificity of 97% for patients with low to moderate pretest probability (≤ 50%) of a malignant pulmonary nodule. The primary limitation of this study is that a high number of patients were excluded from the study due to incomplete clinical data or because they were subsequently determined to be outside of the intended use population. It is unclear if the intended use population was determined a priori. Validation in an independent sample in the intended use population is needed. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with undiagnosed pulmonary nodules following indeterminate bronchoscopy results for suspected lung cancer who receive gene expression profiling of bronchial brushings, the evidence includes multicenter prospective studies. The relevant outcomes are overall survival, disease-specific survival, test accuracy and validity, morbidity, hospitalizations, and resource utilization. Reported receiver operating characteristic curve values ranged from 0.74 to 0.81, with a negative predictive value of 91%. Among patients with a low and intermediate pretest probability of cancer with an inconclusive bronchoscopy, 77 (85%) patients underwent invasive diagnostic procedures. However, there was a relatively high number of missed cancers. No validation of the test in other populations was identified. Also, where the test would fall in the clinical pathway (i.e., other than indeterminate bronchoscopy) is uncertain. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/2019</td>
<td>Clarified coding information</td>
</tr>
<tr>
<td>1/2019</td>
<td>Clarified coding information</td>
</tr>
</tbody>
</table>

Information Pertaining to All Blue Cross Blue Shield Medical Policies

Click on any of the following terms to access the relevant information:

- Medical Policy Terms of Use
- Managed Care Guidelines
- Indemnity/PPO Guidelines
- Clinical Exception Process
- Medical Technology Assessment Guidelines

References

