Medical Policy
Hematopoietic Cell Transplantation for CNS Embryonal Tumors and Ependymoma

Table of Contents
• Policy: Commercial
• Policy: Medicare
• Authorization Information
• Coding Information
• Description
• Policy History
• Information Pertaining to All Policies
• References

Policy Number: 205
BCBSA Reference Number: 8.01.28
NCD/LCD: NA

Related Policies
Hematopoietic Cell Transplantation for Solid Tumors of Childhood, #208

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Medicare HMO BlueSM and Medicare PPO BlueSM Members

EMBRYONAL TUMORS OF THE CENTRAL NERVOUS SYSTEM

Autologous Hematopoietic Cell Transplantation
Autologous hematopoietic cell transplantation may be considered MEDICALLY NECESSARY as consolidation therapy for previously untreated embryonal tumors of the central nervous system (CNS) that show partial or complete response to induction chemotherapy, or stable disease after induction therapy.

Autologous hematopoietic cell transplantation may be MEDICALLY NECESSARY to treat recurrent embryonal tumors of the CNS.

Tandem autologous hematopoietic cell transplantation is INVESTIGATIONAL to treat embryonal tumors of the CNS.

Allogeneic Hematopoietic Cell Transplantation
Allogeneic hematopoietic cell transplantation is INVESTIGATIONAL to treat embryonal tumors of the CNS.

EPENDYMOMA
Autologous, tandem autologous, and allogeneic hematopoietic cell transplantation is INVESTIGATIONAL to treat ependymoma.
Prior Authorization Information

Inpatient
- For services described in this policy, precertification/preauthorization **IS REQUIRED** for all products if the procedure is performed inpatient.

Outpatient
- For services described in this policy, see below for products where prior authorization **might be required** if the procedure is performed outpatient.

<table>
<thead>
<tr>
<th>Outpatient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Managed Care (HMO and POS)</td>
</tr>
<tr>
<td>Commercial PPO and Indemnity</td>
</tr>
<tr>
<td>Medicare HMO Blue℠</td>
</tr>
<tr>
<td>Medicare PPO Blue℠</td>
</tr>
</tbody>
</table>

CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following codes are included below for informational purposes only; this is not an all-inclusive list.

The above medical necessity criteria MUST be met for the following codes to be covered for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue:

CPT codes

<table>
<thead>
<tr>
<th>CPT codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>38206</td>
<td>Blood-derived hematopoietic progenitor cell harvesting for transplantation, per collection; autologous</td>
</tr>
<tr>
<td>38232</td>
<td>Bone marrow harvesting for transplantation; autologous</td>
</tr>
</tbody>
</table>

HCPCS Codes

<table>
<thead>
<tr>
<th>HCPCS codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2150</td>
<td>Bone marrow or blood-derived peripheral stem-cell harvesting and transplantation, allogeneic or autologous, including pheresis, high-dose chemotherapy, and the number of days of post-transplant care in the global definition (including drugs; hospitalization; medical surgical, diagnostic and emergency services)</td>
</tr>
</tbody>
</table>

ICD-10 Procedure Codes

<table>
<thead>
<tr>
<th>ICD-10-PCS procedure codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>30233G0</td>
<td>Transfusion of Autologous Bone Marrow into Peripheral Vein, Percutaneous Approach</td>
</tr>
<tr>
<td>30233X0</td>
<td>Transfusion of Autologous Cord Blood Stem Cells into Peripheral Vein, Percutaneous Approach</td>
</tr>
<tr>
<td>30233Y0</td>
<td>Transfusion of Autologous Hematopoietic Stem Cells into Peripheral Vein, Percutaneous Approach</td>
</tr>
</tbody>
</table>
Description

HEMATOPOIETIC CELL TRANSPLANTATION

Hematopoietic cell transplantation (HCT) is a procedure in which hematopoietic cells are infused to restore bone marrow function in cancer patients who receive bone-marrow-ablative doses of cytotoxic drugs. Bone-marrow stem cells may be obtained from the transplant recipient (autologous HCT) or from a donor (allogeneic HCT). They can be harvested from bone marrow, peripheral blood, or umbilical cord blood shortly after delivery of neonates.

HCT for Brain Tumors Autologous HCT allows for escalation of chemotherapy doses above those limited by myeloablation and has been tried in patients with high-risk brain tumors in an attempt to eradicate residual tumor cells and improve cure rates. The use of allogeneic HCT for solid tumors does not rely on escalation of chemotherapy intensity and tumor reduction but rather on a graft-versus-tumor effect. Allogeneic HCT is not commonly used in solid tumors and may be used if an autologous source cannot be cleared of tumor or cannot be harvested.

CENTRAL NERVOUS SYSTEM EMBRYONAL TUMORS

Classification of brain tumors is based on both histopathologic characteristics of the tumor and location in the brain. Central nervous system (CNS) embryonal tumors are more common in children and are the most common brain tumor in childhood. CNS embryonal tumors are primarily composed of undifferentiated round cells, with divergent patterns of differentiation. It has been proposed that these tumors be merged under the term primitive neuroectodermal tumor (PNET); however, histologically similar tumors in different locations in the brain demonstrate different molecular genetic variants. Embryonal tumors of the CNS include medulloblastoma, medulloepithelioma, supratentorial PNETs (sPNETs; pineoblastoma, cerebral neuroblastoma, ganglioneuroblastoma), ependymoblastoma, atypical teratoid/rhabdoid tumor.

Medulloblastomas account for 20% of all childhood CNS tumors. The other types of embryonal tumors are rare by comparison. Surgical resection is the mainstay of therapy with the goal being gross total resection with adjuvant radiotherapy, because medulloblastomas are very radiosensitive. Treatment protocols are based on risk stratification as average or high risk. The average-risk group includes children older than 3 years, without metastatic disease, and with tumors that are totally or near totally resected (<1.5 cm² of residual disease). The high-risk group includes children aged 3 years or younger, or with metastatic disease, and/or subtotal resection (>1.5 cm² of residual disease).¹

Current standard treatment regimens for average-risk medulloblastoma (postoperative craniospinal irradiation with boost to the posterior fossa followed by 12 months of chemotherapy) have resulted in 5-year overall survival (OS) rates of 80% or better.¹ For high-risk medulloblastoma treated with conventional doses of chemotherapy and radiotherapy, the average event-free survival at 5 years ranges from 34% to 40% across studies.² Fewer than 55% of children with high-risk disease survive longer than 5 years. The treatment of newly diagnosed medulloblastoma continues to evolve, and in children younger than age 3
years, because of the concern of the deleterious effects of craniospinal radiation on the immature nervous system, therapeutic approaches have attempted to delay and sometimes avoid the use of radiation and have included trials of higher-dose chemotherapeutic regimens with autologous HCT.

sPNETs are most commonly located in the cerebral cortex and pineal region. The prognosis for these tumors is worse than for medulloblastoma, despite identical therapies. After surgery, children are usually treated similarly to children with high-risk medulloblastoma. Three- to 5-year OS rates of 40% to 50% have been reported and, for patients with disseminated disease, survival rates at 5 years range from 10% to 30%.

Recurrent childhood CNS embryonal tumor is not uncommon and, depending on which type of treatment the patient initially received, autologous HCT may be an option. For patients who receive high-dose chemotherapy and autologous HCT for recurrent embryonal tumors, objective response is 50% to 75%; however, long-term disease control is obtained in fewer than 30% of patients and is primarily seen in patients in first relapse with localized disease at the time of relapse.

EPENDYMOMA

Ependymoma is a neuroepithelial tumor that arises from the ependymal lining cell of the ventricles and is, therefore, usually contiguous with the ventricular system. An ependymoma tumor typically arises intracranially in children, while in adults a spinal cord location is more common. Ependymomas have access to the cerebrospinal fluid and may spread throughout the entire neuroaxis. Ependymomas are distinct from ependymoblastomas due to their more mature histologic differentiation. Initial treatment of ependymoma consists of maximal surgical resection followed by radiotherapy. Chemotherapy usually does not play a role in the initial treatment of ependymoma. However, disease relapse is common, typically occurring at the site of origin. Treatment of recurrence is problematic; further surgical resection or radiotherapy is usually not possible. Given the poor response to conventional-dose chemotherapy, high-dose chemotherapy with autologous HCT has been investigated as a possible salvage therapy.

Other CNS tumors include astrocytoma, oligodendroglioma, and glioblastoma multiforme. These tumors arise from glial cells, not neuroepithelial cells.

Summary

High-dose chemotherapy (HDC) with hematopoietic cell transplantation (HCT) has been investigated as a possible therapy in pediatric patients with brain tumors, particularly in those with disease considered high risk. In addition, the use of HCT has allowed for a reduction in the dose of radiation needed to treat both average- and high-risk disease, with preservation of quality of life and intellectual functioning, without compromising survival.

For individuals who have newly diagnosed central nervous system (CNS) embryonal tumors who receive autologous HCT, the evidence includes prospective and retrospective studies. Relevant outcomes are overall survival, disease-specific survival, and treatment-related morbidity and mortality. For pediatric CNS embryonal tumors, an important consideration is whether the use of HCT may allow for a reduction in radiation dose. Data from single-arm studies using HDC with autologous HCT to treat newly diagnosed CNS embryonal tumors have shown comparable or improved survival (both event-free survival and overall survival) compared with historical controls treated with conventional therapy, with or without radiotherapy, particularly in patients with disease considered high risk. In a retrospective comparative study, survival in patients receiving HDC with HCT and delayed craniospinal irradiation was comparable to survival in those receiving upfront craniospinal irradiation. Overall, data from these observational studies has suggested HCT may allow reduced doses of craniospinal irradiation without worsening survival outcomes. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome. For individuals who have recurrent/relapsed CNS embryonal tumors who receive autologous HCT, the evidence includes prospective and retrospective single-arm studies and a systematic review of these studies. Relevant outcomes are overall survival, disease-specific survival, and treatment-related morbidity and mortality. For recurrent/relapsed CNS embryonal tumors, survival outcomes after HCT are variable, and survival is generally very poor for tumors other than medulloblastoma. Data from some single-arm studies using autologous HCT to treat recurrent CNS
embryonal tumors have shown comparable or improved survival compared with historical controls treated with conventional therapy for certain patients. The results of a 2012 systematic review of observational studies in patients with relapsed supratentorial primitive neuroectodermal tumor (sPNET) suggested that a subgroup of infants with chemosensitive disease might benefit from autologous HCT, achieving survival without the use of radiotherapy, whereas outcomes in older children and/or in pineal location are poor with this modality. However, a relatively large prospective multicenter study has reported that HCT was not associated with improved survival outcomes in patients who had a good response to therapy. Overall, data from these single-arm studies has suggested HCT may be associated with improved survival outcomes in select patients, although data for some tumor types is limited (eg, atypical teratoid/rhabdoid tumors). The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have CNS embryonal tumors who receive tandem autologous HCT, the evidence includes prospective and retrospective single-arm studies. Relevant outcomes are overall survival, disease-specific survival, and treatment-related morbidity and mortality. Less evidence specifically addresses the use of tandem autologous HCT for CNS embryonal tumors. The available single-arm studies are very small, but appear to report overall survival and event-free survival rates comparable to single autologous HCT. Tandem transplants may allow reduced doses of craniospinal irradiation, with the goal of avoiding long-term radiation damage. However, most studies used standard-dose irradiation, making the relative benefit of tandem autologous HCT uncertain. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have CNS embryonal tumors who receive allogeneic HCT, the evidence includes case reports. Relevant outcomes are overall survival, disease-specific survival, and treatment-related morbidity and mortality. The available evidence is limited. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have ependymoma who receive autologous HCT, the evidence includes relatively small case series. Relevant outcomes are overall survival, disease-specific survival, and treatment-related morbidity and mortality. The available case series do not report higher survival rates for patients with ependymoma treated with HCT compared with standard therapies. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2019</td>
<td>Outpatient prior authorization is required for all commercial products including Medicare Advantage. Effective 1/1/2019.</td>
</tr>
<tr>
<td>3/2017</td>
<td>BCBSA National medical policy review. Title changed. New references added. 3/1/2017</td>
</tr>
<tr>
<td>9/2015</td>
<td>Clarified coding information.</td>
</tr>
<tr>
<td>12/2014</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>6/2014</td>
<td>Updated Coding section with ICD10 procedure and diagnosis codes, effective 10/2015.</td>
</tr>
<tr>
<td>2/2014</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>12/2012</td>
<td>Updated to add new CPT code 38243.</td>
</tr>
</tbody>
</table>
Information Pertaining to All Blue Cross Blue Shield Medical Policies
Click on any of the following terms to access the relevant information:
Medical Policy Terms of Use
Managed Care Guidelines
Indemnity/PPO Guidelines
Clinical Exception Process
Medical Technology Assessment Guidelines

References

