Medical Policy
Myoelectric Prosthetic Components for the Upper Limb

Table of Contents
• Policy: Commercial
• Policy: Medicare
• Authorization Information
• Coding Information
• Description
• Policy History
• Information Pertaining to All Policies
• References

Policy Number: 227
BCBSA Reference Number: 1.04.04

Related Policies
• NMES (Neuromuscular Electrical Stimulation), #201

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Medicare HMO BlueSM and Medicare PPO BlueSM Members

Myoelectric upper limb prosthetic components may be MEDICALLY NECESSARY when all of the following conditions are met:
• The patient has an amputation or missing limb at the wrist or above (forearm, elbow, etc.), AND
• Standard body-powered prosthetic devices cannot be used or are insufficient to meet the functional needs of the individual in performing activities of daily living, AND
• The remaining musculature of the arm(s) contains the minimum microvolt threshold to allow operation of a myoelectric prosthetic device, AND
• The patient has demonstrated sufficient neurological and cognitive function to operate the prosthesis effectively, AND
• The patient is free of comorbidities that could interfere with function of the prosthesis (neuromuscular disease, etc.), AND
• Functional evaluation indicates that with training, use of a myoelectric prosthesis is likely to meet the functional needs of the individual (e.g., gripping, releasing, holding, and coordinating movement of the prosthesis) when performing activities of daily living. This evaluation should consider the patient’s needs for control, durability (maintenance), function (speed, work capability), and usability, AND
• The amputee has been evaluated by an independent qualified professional to determine the most appropriate prosthetic components and control mechanism (e.g., body-powered, myoelectric, or combination of body-powered and myoelectric). The independent qualified professional has verified that the amputee meets all the medical necessity criteria for the device.

A prosthesis with individually powered digits, including but not limited to a partial hand prosthesis, is considered INVESTIGATIONAL.
Myoelectric upper limb prosthetic components are **NOT MEDICALLY NECESSARY** under all other conditions.

Prior Authorization Information
Pre-service approval is required for all inpatient services for all products. See below for situations where prior authorization may be required or may not be required for outpatient services. Yes indicates that prior authorization is required. No indicates that prior authorization is not required. N/A indicates that this service is primarily performed in an inpatient setting.

<table>
<thead>
<tr>
<th>Commercial Managed Care (HMO and POS)</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>No</td>
</tr>
<tr>
<td>Medicare HMO Blue SM</td>
<td>No</td>
</tr>
<tr>
<td>Medicare PPO Blue SM</td>
<td>No</td>
</tr>
</tbody>
</table>

CPT Codes / HCPCS Codes / ICD-9 Codes
Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member. A draft of future ICD-10 Coding related to this document, as it might look today, is included below for your reference.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following codes are included below for informational purposes only; this is not an all-inclusive list.

The above medical necessity criteria MUST be met for the following codes to be covered for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue

CPT Codes
There is no specific CPT code for this service.

HCPCS Codes

<table>
<thead>
<tr>
<th>HCPCS codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L6026</td>
<td>Transcarpal/metacarpal or partial hand disarticulation prosthesis, external power, self-suspended, inner socket with removable forearm section, electrodes and cables, two batteries, charger, myoelectric control of terminal device, excludes terminal device(s)</td>
</tr>
<tr>
<td>L6925</td>
<td>Wrist disarticulation, external power, self-suspended inner socket, removable forearm shell, Otto Bock or equal electrodes, cables, 2 batteries and one charger, myoelectronic control of terminal device</td>
</tr>
<tr>
<td>L6935</td>
<td>Below elbow, external power, self-suspended inner socket, removable forearm shell, Otto Bock or equal electrodes, cables, 2 batteries and one charger, myoelectronic control of terminal device</td>
</tr>
<tr>
<td>L6945</td>
<td>Elbow disarticulation, external power, molded inner socket, removable humeral shell, outside locking hinges, forearm, Otto Bock or equal electrodes, cables, 2 batteries and one charger, myoelectronic control of terminal device</td>
</tr>
<tr>
<td>L6955</td>
<td>Above elbow, external power, molded inner socket, removable humeral shell, internal locking elbow, forearm, Otto Bock or equal electrodes, cables, 2 batteries and one charger, myoelectronic control of terminal device</td>
</tr>
</tbody>
</table>
Shoulder disarticulation, external power, molded inner socket, removable shoulder shell, shoulder bulkhead, humeral section, mechanical elbow, forearm, Otto Bock or equal electrodes, cables, 2 batteries and one charger, myoelectronic control of terminal device

Interscapular-thoracic, external power, molded inner socket, removable shoulder shell, shoulder bulkhead, humeral section, mechanical elbow, forearm, Otto Bock or equal electrodes, cables, 2 batteries and one charger, myoelectronic control of terminal device

Electric hand, switch or myoelectric controlled, adult

Electric hand, switch or myoelectric controlled, pediatric

Electric hook, switch or myoelectric controlled, adult

Electric hook, switch or myoelectric controlled, pediatric

Electronic elbow, microprocessor sequential control of elbow and terminal device

Electronic elbow, microprocessor simultaneous control of elbow and terminal device

Electronic elbow, adolescent, Variety Village or equal, myoelectronically controlled

Electronic elbow, child, Variety Village or equal, myoelectronically controlled

ICD-9 Procedure Codes
When the following ICD 9 procedure codes are associated with the service(s) described in this document coverage for the service(s) is aligned with the policy statement.

<table>
<thead>
<tr>
<th>ICD-9-CM procedure codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>84.41</td>
<td>Fitting of prosthesis of upper arm and shoulder</td>
</tr>
<tr>
<td>84.43</td>
<td>Fitting of prosthesis of arm, not otherwise specified</td>
</tr>
</tbody>
</table>

ICD-10 Procedure Codes

<table>
<thead>
<tr>
<th>ICD-10-PCS procedure codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0DZ8UZ</td>
<td>Prosthesis Device Fitting using Prosthesis</td>
</tr>
<tr>
<td>F0DZ8FZ</td>
<td>Prosthesis Device Fitting using Assistive, Adaptive, Supportive or Protective Equipment</td>
</tr>
</tbody>
</table>

Description
Upper limb prostheses are used for amputations at any level from the hand to the shoulder and are classified into 3 categories, depending on the means of generating movement at the joints: passive, body-powered, and electrically powered movement including a hybrid system. The primary goals of upper limb prostheses are to restore natural appearance and function while allowing sufficient comfort and ease of use for continued acceptance by the wearer. The difficulty of achieving these diverse goals with an upper limb prosthesis increases as the level of amputation (e.g., digits, hand, wrist, elbow, and shoulder) increases, and, thus, the complexity of joint movement, increases.

The passive prosthesis is the lightest of the 3 types and is described as the most comfortable yet provides only manual movement. The body-powered prosthesis uses a body harness and cable system to provide functional manipulation of the elbow and hand. Patient complaints include harness discomfort, particularly the wear temperature, wire failure, and the unattractive appearance. The third type and most functional are the myoelectric prostheses which are powered by electric motors with an external power source. The joint movement is driven by microchip-processed electrical activity from the muscles of the remaining limb stump or from supplemental battery power. Patient dissatisfaction with myoelectric prostheses includes maintenance (particularly for the glove), and weight.

Examples of myoelectric devices include ProDigits™ and i-LIMB™ from Touch Bionics, the Otto Bock myoelectric prosthesis from Otto Bock, the LTI Boston Digital Arm™ System from Liberating
Technologies Inc., and the Utah Arm Systems from Motion Control. All myoelectric devices used in upper limb prosthesis are considered investigational regardless of the commercial name, the manufacturer or FDA approval status except as noted in the policy statement.

Summary
The goals of upper limb prostheses relate to restoration of both appearance and function while maintaining sufficient comfort for continued use. The identified literature focuses primarily on patient acceptance and reasons for disuse; detailed data on function and functional status, and direct comparisons of body-powered and newer model myoelectric prostheses are limited/lacking.

The limited evidence available suggests that in comparison with body-powered prostheses, myoelectric components may improve range of motion to some extent, have similar capability for light work but may have reduced performance under heavy working conditions. The literature also indicates that the percentage of amputees who accept use of a myoelectric prosthesis is approximately the same as those who prefer to use a body-powered prosthesis and that self-selected use depends at least in part on the individual’s activities of daily living.

Appearance is most frequently cited as an advantage of myoelectric prostheses, and for patients who desire a restorative appearance; the myoelectric prosthesis can provide greater function than a passive prosthesis, with equivalent function to a body-powered prosthesis for light work. Nonuse of any prosthesis is associated with lack of functional need, discomfort (excessive weight and heat), and impediment to sensory feedback. Because of the differing advantages and disadvantages of the currently available prostheses, myoelectric components for individuals with an amputation at the wrist or above may be considered when passive or body-powered prostheses cannot be used or are insufficient to meet the functional needs of the patient in activities of daily living. Evidence is insufficient to evaluate full or partial hand prostheses with individually powered digits; these are considered investigational.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2015</td>
<td>Clarified coding information.</td>
</tr>
<tr>
<td>6/2014</td>
<td>Updated Coding section with ICD10 procedure and diagnosis codes, effective 10/2015.</td>
</tr>
<tr>
<td>4/2014</td>
<td>Clarified coding information.</td>
</tr>
<tr>
<td>12/2013</td>
<td>BCBSA National medical policy review. Title changed.</td>
</tr>
</tbody>
</table>

Information Pertaining to All Blue Cross Blue Shield Medical Policies
Click on any of the following terms to access the relevant information:
Medical Policy Terms of Use
Managed Care Guidelines
Indemnity/PPO Guidelines
Clinical Exception Process
Medical Technology Assessment Guidelines

References