Medical Policy
Treatment of Tinnitus

Table of Contents
• Policy: Commercial
• Coding Information
• Policy: Medicare
• Description
• Authorization Information
• Information Pertaining to All Policies
• References

Policy Number: 267
BCBSA Reference Number: 8.01.39
NCD/LCD: N/A

Related Policies
• Auditory Brainstem Implant, #481
• Biofeedback for Miscellaneous Indications, #187
• Botulinum Toxin Injections, #006
• Cochlear Implant, #478
• Low-Level Laser Therapy, #522
• Repetitive Transcranial Magnetic Stimulation, #297

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity
Medicare HMO BlueSM and Medicare PPO BlueSM Members

Psychological coping therapy may be considered MEDICALLY NECESSARY for persistent and
bothersome tinnitus.

Treatment of tinnitus with any of the following therapies is considered INVESTIGATIONAL:
• Tinnitus maskers, customized sound therapy
• Combined psychological and sound therapy (eg, tinnitus retraining therapy)
• Transcranial magnetic stimulation
• Transcranial direct current stimulation
• Electrical transcutaneous electrical stimulation of the ear, electromagnetic energy
• Transmeatal laser irradiation.

Note: This policy does not address surgical (eg, cochlear or brainstem implants); pharmacologic
treatment of tinnitus (eg, use of amitriptyline or other tricyclic antidepressants), or injection of botulinum
toxin.

Prior Authorization Information
Pre-service approval is required for all inpatient services for all products.
See below for situations where prior authorization may be required or may not be required for outpatient services.
Yes indicates that prior authorization is required.
No indicates that prior authorization is not required.
N/A indicates that this service is primarily performed in an inpatient setting.

<table>
<thead>
<tr>
<th>Commercial Managed Care (HMO and POS)</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>No</td>
</tr>
<tr>
<td>Medicare HMO Blue℠</td>
<td>No</td>
</tr>
<tr>
<td>Medicare PPO Blue℠</td>
<td>No</td>
</tr>
</tbody>
</table>

CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

CPT Codes

There are no specific CPT codes for these services.

Description

Tinnitus describes the perception of any sound in the ear in the absence of an external stimulus and presents a malfunction in the processing of auditory signals. A hearing impairment, often noise-induced or related to aging, is commonly associated with tinnitus. Clinically, tinnitus is subdivided into subjective and objective types. The latter describes the minority of cases, in which an external stimulus is potentially heard by an observer (e.g., by placing a stethoscope over the patient’s external ear). Common causes of objective tinnitus include middle ear and skull-based tumors, vascular abnormalities, and metabolic derangements. The more common type is subjective tinnitus, which is frequently self-limited. In a small subset of patients with subjective tinnitus, its intensity and persistence leads to disruption of daily life. While many patients habituate to tinnitus, others may seek medical care if the tinnitus becomes too disruptive.

Many treatments are supportive in nature because, currently, there is no cure. One treatment, called tinnitus masking therapy, has focused on use of devices worn in the ear that produce a broad band of continuous external noise that drowns out or masks the tinnitus. Psychological therapies may also be provided to improve coping skills, typically requiring 4 to 6 one-hour visits over an 18-month period. Tinnitus retraining therapy, also referred to as tinnitus habituation therapy, is based on the theories of Jastreboff, who proposed that tinnitus itself is related to the normal background electrical activity in auditory nerve cells, but the key factor in some patients’ unpleasant response to the noise is due to a spreading of the signal and an abnormal conditioned reflex in the extra-auditory limbic and autonomic nervous systems. The goal of tinnitus retraining therapy is to habituate (retrain) the subcortical and cortical response to the auditory neural activity. In contrast to tinnitus masking, the auditory stimulus is not intended to drown out or mask the tinnitus but is set at a level such that the tinnitus can still be detected.

This strategy is thought to enhance extinction of the subconscious conditioned reflexes connecting the auditory system with the limbic and autonomic nervous systems by increasing neuronal activity within the auditory system. Treatment may also include the use of hearing aids to increase external auditory stimulation. The Heidelberg model uses an intensive program of active and receptive music therapy, relaxation with habituation to the tinnitus sound, and stress mapping with a therapist.

Sound therapy is a treatment approach based on evidence of auditory cortex reorganization (cortical remapping) with tinnitus, hearing loss, and sound/frequency training. One type of sound therapy uses an ear-worn device (Neuromonics Tinnitus Treatment; Neuromonics, Australia) prerecorded with selected relaxation audio and other sounds spectrally adapted to the individual patient’s hearing thresholds. This is
achieved by boosting the amplitude of those frequencies at which an audiogram has shown the patient to have a reduced hearing threshold. Also being evaluated is auditory tone discrimination training at or around the tinnitus frequency. Another type of sound therapy that is being investigated uses music with the frequency of the tinnitus removed (notched music) to promote reorganization of sound processing in the auditory cortex. One theory behind notched music is that tinnitus is triggered by injury to inner ear hair cell population, resulting in both a loss of excitatory stimulation of the represented auditory cortex and loss of inhibition on the adjoining frequency areas. It is proposed that this loss of inhibition leads to hyperactivity and overrepresentation at the edge of the damaged frequency areas and that removing the frequencies overrepresented at the audiometric edge will result in reorganization of the brain.

Electrical stimulation to the external ear has also been investigated and is based on the observation that electrical stimulation of the cochlea associated with a cochlear implant may be associated with a reduction in tinnitus. Transmeatal low-power laser irradiation, electrical stimulation, and transcranial magnetic stimulation have also been evaluated.

Summary
Various nonpharmacologic treatments are being evaluated to improve the symptoms of tinnitus. These approaches include psychological coping therapies, sound therapies, combined psychological and sound therapies, repetitive transcranial magnetic stimulation, electrical and electromagnetic stimulation, and transmeatal laser irradiation.

For individuals who have persistent, bothersome tinnitus who receive psychological coping therapy, the evidence includes randomized controlled trials (RCTs) and meta-analyses of RCTs. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. These therapies are intended to reduce tinnitus impairment and improve health-related quality of life. Meta-analyses of a variety of cognitive and behavioral therapies have found improvement in global tinnitus severity and quality of life, even when tinnitus loudness is not affected. Other RCTs have reported that a self-help/Internet-based approach to cognitive and behavioral therapy or acceptance and commitment therapy may also improve coping skills. The evidence is sufficient to determine that the technology results in a meaningful improvement in health outcomes.

For individuals who have tinnitus who receive sound therapy, the evidence includes RCTs and a systematic review of RCTs. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. The evidence on tinnitus masking includes RCTs and a systematic review of RCTs. The RCTs have medium-to-high risk of bias and did not show efficacy of masking therapy. Research on customized sound therapy appears to be at an early stage. For example, the studies described use of very different approaches for sound therapy, and it is not yet clear whether therapy is more effective when the training frequency is the same or adjacent to the tinnitus pitch. A 2016 trial, double-blinded and adequately powered, found no benefit of notched music on the primary outcome measures of tinnitus perception and tinnitus distress, although the subcomponent score of tinnitus loudness was reported to be reduced. A benefit on tinnitus loudness but not tinnitus perception or tinnitus distress is of uncertain clinical significance, may be spurious, and would need corroboration in additional studies. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have tinnitus who receive combined psychological and sound therapy (eg, tinnitus retraining therapy), the evidence includes RCTs. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. The evidence on tinnitus retraining therapy consists of a number of small randomized or quasi-randomized controlled trials. Together, the literature does not show a consistent improvement in the primary outcome measure (Tinnitus Handicap Inventory) when tinnitus retraining therapy is compared with active or sham controls. For Heidelberg neuromusic therapy, 1 trial has used an investigator-blinded RCT design and showed positive short-term results following treatment. However, the durability of treatment is also unknown. A large, multicenter RCT trial using an intensive, multidisciplinary intervention showed improvement in outcomes. However, it is uncertain whether the multiple intensive interventions used in this trial could be replicated outside of the investigational setting. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have tinnitus who receive transcranial magnetic stimulation, the evidence includes a
number of small- to moderate-sized RCTs and systematic reviews. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. Results from these studies are mixed, with some trials reporting a statistically significant effect of repetitive transcranial magnetic stimulation on tinnitus severity and others reporting no significant difference. Larger controlled trials with longer follow-up are needed for this common condition. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have tinnitus who receive electrical or electromagnetic stimulation, the evidence includes a number of sham-controlled RCTs. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. The available evidence does not currently support use of these treatments. A 2015 sham-controlled study that was adequately powered found no benefit of transcranial direct current stimulation. Studies have not shown a benefit for direct current electrical stimulation of the ear. The evidence on electromagnetic energy includes a small RCT, which found no benefit for the treatment of tinnitus. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have tinnitus who receive transmeatal laser irradiation, the evidence includes RCTs and crossover trials. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. The evidence for transmeatal laser irradiation includes a number of double-blind RCTs, most of which showed no efficacy of this treatment. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/2017</td>
<td>BCBSA National medical policy review. Policy updated to indicate that psychological coping therapy is medically necessary for persistent and bothersome tinnitus. Combined psychological and sound therapy added to the investigational policy statement. Effective 7/1/2017.</td>
</tr>
<tr>
<td>5/2016</td>
<td>BCBSA National medical policy. Policy statement reordered and “surgical” added to the note on topics that the policy does not address. 5/1/2016</td>
</tr>
<tr>
<td>7/2015</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>9/2014</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>6/2013</td>
<td>New references from BCBSA National medical policy.</td>
</tr>
<tr>
<td>9/29/2010</td>
<td>New policy with coverage information currently on medical policy #400.</td>
</tr>
</tbody>
</table>

Information Pertaining to All Blue Cross Blue Shield Medical Policies

Click on any of the following terms to access the relevant information:

Medical Policy Terms of Use
Managed Care Guidelines
Indemnity/PPO Guidelines
Clinical Exception Process
Medical Technology Assessment Guidelines

References

