Medical Policy
Stem Cell Therapy for Peripheral Arterial Disease

Table of Contents
• Policy: Commercial
• Policy: Medicare
• Authorization Information
• Coding Information
• Description
• Policy History
• Information Pertaining to All Policies
• References

Policy Number: 348
BCBSA Reference Number: 8.01.55
NCD/LCD: NA

Related Policies
• Orthopedic Applications of Stem Cell Therapy, #254
• Progenitor Cell Therapy for the Treatment of Damaged Myocardium due to Ischemia, #652

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity
Medicare HMO BlueSM and Medicare PPO BlueSM Members

Treatment of peripheral arterial disease, including critical limb ischemia, with injection or infusion of stem cells from concentrated bone marrow, expanded in vitro, stimulated from peripheral blood, or from an allogeneic source, is considered INVESTIGATIONAL.

Prior Authorization Information
Inpatient
• For services described in this policy, precertification/preauthorization IS REQUIRED for all products if the procedure is performed inpatient.

Outpatient
• For services described in this policy, see below for products where prior authorization might be required if the procedure is performed outpatient.

<table>
<thead>
<tr>
<th>Policy Type</th>
<th>Coverage Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Managed Care (HMO and POS)</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Medicare HMO BlueSM</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Medicare PPO BlueSM</td>
<td>This is not a covered service.</td>
</tr>
</tbody>
</table>
CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following codes are included below for informational purposes only; this is not an all-inclusive list.

The following CPT codes are considered investigational for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue, and Medicare PPO Blue:

<table>
<thead>
<tr>
<th>CPT Codes</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0263T</td>
<td>Intramuscular autologous bone marrow cell therapy, with preparation of harvested cells, multiple injections, one leg, including ultrasound guidance, if performed; complete procedure including unilateral or bilateral bone marrow harvest</td>
</tr>
<tr>
<td>0264T</td>
<td>Intramuscular autologous bone marrow cell therapy, with preparation of harvested cells, multiple injections, one leg, including ultrasound guidance, if performed; complete procedure excluding bone marrow harvest</td>
</tr>
<tr>
<td>0265T</td>
<td>Intramuscular autologous bone marrow cell therapy, with preparation of harvested cells, multiple injections, one leg, including ultrasound guidance, if performed; unilateral or bilateral bone marrow harvest only for intramuscular autologous bone marrow cell therapy.</td>
</tr>
</tbody>
</table>

Description

Peripheral Arterial Disease

PAD is a common atherosclerotic syndrome associated with significant morbidity and mortality. A less common cause of PAD is Buerger disease (also called thromboangiitis obliterans), which is a nonatherosclerotic segmental inflammatory disease that occurs in younger patients and is associated with tobacco use. Development of PAD is characterized by narrowing and occlusion of arterial vessels and eventual reduction in distal perfusion. Critical limb ischemia is the end stage of lower-extremity PAD in which severe obstruction of blood flow results in ischemic pain at rest, ulcers, and a significant risk for limb loss.

Physiology

Two endogenous compensating mechanisms may occur with occlusion of arterial vessels: capillary growth (angiogenesis) and development of collateral arterial vessels (arteriogenesis). Capillary growth is mediated by the hypoxia-induced release of chemokines and cytokines such as vascular endothelial growth factor and occurs by sprouting of small endothelial tubes from preexisting capillary beds. The resulting capillaries are small and cannot sufficiently compensate for a large occluded artery. Arteriogenesis with collateral growth is, in contrast, initiated by increasing shear forces against vessel walls when blood flow is redirected from the occluded transport artery to the small collateral branches, leading to an increase in the diameter of preexisting collateral arterioles.

The mechanism underlying arteriogenesis includes the migration of bone marrow–derived monocytes to the perivascular space. The bone marrow–derived monocytes adhere to and invade the collateral vessel wall. It is not known if the expansion of the collateral arteriole is due to the incorporation of stem cells into the wall of the vessel or to cytokines released by monocyctic bone marrow cells that induce the proliferation of resident endothelial cells. It has been proposed that bone marrow–derived monocytic cells may be the putative circulating endothelial progenitor cells. Notably, the same risk factors for advanced
ischemia (diabetes, smoking, hyperlipidemia, advanced age) are also risk factors for a lower number of circulating progenitor cells.

Treatment
Use of autologous stem cells freshly harvested and allogeneic stem cells are purported to have a role in the treatment of peripheral arterial disease. The primary outcome in stem cell therapy trials regulated by the U.S. Food and Drug Administration is amputation-free survival. Other outcomes for critical limb ischemia include the Rutherford criteria for limb status, healing of ulcers, the Ankle-Brachial Index, transcutaneous oxygen pressure, and pain-free walking. The Rutherford criteria include ankle and toe pressure, level of claudication, ischemic rest pain, tissue loss, nonhealing ulcer, and gangrene. The Ankle-Brachial Index measures arterial segmental pressures on the ankle and brachium and indexes ankle systolic pressure against brachial systolic pressure (normative range, 0.95-1.2 mm Hg). An increase of more than 0.1 mm Hg is considered clinically significant. Transcutaneous oxygen pressure is measured with an oxymonitor; a normal range is 70 to 90 mm Hg. Pain-free walking may be measured by time on a treadmill or, more frequently, by distance in a 400-meter walk.

Summary
Critical limb ischemia due to peripheral arterial disease results in pain at rest, ulcers, and significant risk for limb loss. Injection or infusion of stem cells, either concentrated from bone marrow, expanded in vitro, stimulated from peripheral blood, or from an allogeneic source, is being evaluated for the treatment of critical limb ischemia.

For individuals who have peripheral arterial disease who receive stem cell therapy, the evidence includes small randomized trials, systematic reviews, retrospective reviews, and case series. The relevant outcomes are overall survival, symptoms, change in disease status, morbid events, functional outcomes, quality of life, and treatment-related morbidity. The current literature on stem cells as a treatment for critical limb ischemia due to peripheral arterial disease consists primarily of phase 2 studies using various cell preparation methods and methods of administration. A meta-analysis of the trials with the lowest risk of bias has shown no significant benefit of stem cell therapy for overall survival, amputation-free survival, or amputation rates. Two randomized controlled trials have been published that used granulocyte colony-stimulating factor mobilized peripheral mononuclear cells. The route of administration of the cell therapy and the primary outcomes differed between studies. In the trial that added cell therapy to guideline-based care, there were no significant differences in progression-free survival and frequency of limb amputation at one year of follow-up. There was a substantial rate of subsequent surgical intervention in both arms. Well-designed randomized controlled trials with a larger number of subjects and low-risk of bias are needed to evaluate the health outcomes of these various procedures. Several are in progress, including multicenter randomized, double-blind, placebo-controlled trials. More data on the safety and durability of these treatments are also needed. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/2015</td>
<td>Added coding language.</td>
</tr>
<tr>
<td>7/2015</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>6/2013</td>
<td>New references from BCBSA National medical policy.</td>
</tr>
</tbody>
</table>
Information Pertaining to All Blue Cross Blue Shield Medical Policies
Click on any of the following terms to access the relevant information:
Medical Policy Terms of Use
Managed Care Guidelines
Indemnity/PPO Guidelines
Clinical Exception Process
Medical Technology Assessment Guidelines

References

