Medical Policy
Spinal Cord and Dorsal Root Ganglion Stimulation

Table of Contents
- Policy: Commercial
- Policy: Medicare
- Authorization Information
- Coding Information
- Information Pertaining to All Policies
- Description
- Policy History
- References

Policy Number: 472
BCBSA Reference Number: 7.01.25
NCD/LCD: National Coverage Determination (NCD) for Electrical Nerve Stimulators (160.7)

Related Policies
Deep Brain Stimulation, #473

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity

Spinal cord stimulation with standard or high-frequency stimulation may be considered MEDICALLY NECESSARY for treatment of severe and chronic pain of the trunk or limbs that is refractory to all other pain therapies when ALL of the following patient criteria are met:

- The treatment is used only as a last resort; other treatment modalities (pharmacologic, surgical, psychological, physical, if applicable) have failed or are judged to be unsuitable or contraindicated;
- Pain is neuropathic in nature (ie, resulting from actual damage to the peripheral nerves). Common indications include, but are not limited to, failed back surgery syndrome, complex regional pain syndrome (ie, reflex sympathetic dystrophy), arachnoiditis, radiculopathies, phantom limb/stump pain, and peripheral neuropathy. Spinal cord stimulation is generally not effective in treating nociceptive pain (resulting from irritation, not damage to the nerves) and central deafferentation pain (related to central nervous system damage from a stroke or spinal cord injury);
- No serious untreated drug habituation exists;
- Demonstration of at least 50% pain relief with a temporarily implanted electrode precedes permanent implantation;
- All the facilities, equipment, and professional and support personnel required for the proper diagnosis, treatment, and follow-up of the patient are available.

Dorsal root ganglion neurostimulation is considered MEDICALLY NECESSARY for the treatment of severe and chronic pain of the trunk or limbs that is refractory to all other pain therapies when ALL of the following patient criteria are met:

- The treatment is used only as a last resort; other treatment modalities (pharmacologic, surgical, psychological, physical, if applicable) have failed or are judged to be unsuitable or contraindicated;
• Pain is neuropathic in nature (i.e., resulting from actual damage to the peripheral nerves). Common indications include, but are not limited to, failed back surgery syndrome, complex regional pain syndrome (i.e., reflex sympathetic dystrophy), arachnoiditis, radiculopathies, phantom limb/stump pain, and peripheral neuropathy. Spinal cord stimulation is generally not effective in treating nociceptive pain (resulting from irritation, not damage to the nerves) and central deafferentation pain (related to central nervous system damage from a stroke or spinal cord injury).
• No serious untreated drug habituation exists;
• Demonstration of at least 50% pain relief with a temporarily implanted electrode precedes permanent implantation;
• All the facilities, equipment, and professional and support personnel required for the proper diagnosis, treatment, and follow-up of the patient are available.

Spinal cord stimulation is considered INVESTIGATIONAL in all other situations including, but not limited to, treatment of critical limb ischemia to forestall amputation and treatment of refractory angina pectoris, heart failure, and cancer-related pain.

Medicare HMO BlueSM and Medicare PPO BlueSM Members

Medical necessity criteria and coding guidance can be found through the link below.

National Coverage Determinations (NCDs)

National Coverage Determination (NCD) for Electrical Nerve Stimulators (160.7)

Note: To review the specific NCD, please remember to click “accept” on the CMS licensing agreement at the bottom of the CMS webpage.

Prior Authorization Information

Inpatient
• For services described in this policy, precertification/preauthorization IS REQUIRED for all products if the procedure is performed inpatient.

Outpatient
• For services described in this policy, see below for products where prior authorization might be required if the procedure is performed outpatient.

Commercial Managed Care (HMO and POS)	Prior authorization is required.
Commercial PPO and Indemnity	Prior authorization is not required.
Medicare HMO BlueSM	Prior authorization is required.
Medicare PPO BlueSM	Prior authorization is not required.

Note: For Commercial Managed Care (HMO and POS) and Medicare HMO BlueSM, the temporary implanted electrode (CPT code 63650) that precedes permanent implantation does not require prior authorization. However, prior authorization is required for the permanent placement of implanted electrodes (CPT codes 63655 and 63685).

CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following codes are included below for informational purposes only; this is not an all-inclusive list.
The above medical necessity criteria MUST be met for the following codes to be covered for Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity:

CPT Codes

<table>
<thead>
<tr>
<th>CPT codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63650</td>
<td>Percutaneous implantation of neurostimulator electrode array; epidural</td>
</tr>
<tr>
<td>63655</td>
<td>Laminectomy for implantation of neurostimulator electrode plate/paddle; epidural</td>
</tr>
<tr>
<td>63685</td>
<td>Insertion or replacement of spinal neurostimulator pulse generator or receiver, direct or inductive coupling</td>
</tr>
</tbody>
</table>

HCPCS Codes

<table>
<thead>
<tr>
<th>HCPCS codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1822</td>
<td>Generator, neurostimulator (implantable), high frequency, with rechargeable battery and charging system</td>
</tr>
</tbody>
</table>

The following ICD Diagnosis Codes are considered medically necessary when submitted with the CPT and HCPCS codes above if medical necessity criteria are met:

ICD-10 Diagnosis Codes

<table>
<thead>
<tr>
<th>ICD-10-CM Diagnosis codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G03.9</td>
<td>Meningitis, unspecified</td>
</tr>
<tr>
<td>G56.40</td>
<td>Causalgia of unspecified upper limb</td>
</tr>
<tr>
<td>G56.41</td>
<td>Causalgia of right upper limb</td>
</tr>
<tr>
<td>G56.42</td>
<td>Causalgia of left upper limb</td>
</tr>
<tr>
<td>G57.70</td>
<td>Causalgia of unspecified lower limb</td>
</tr>
<tr>
<td>G57.71</td>
<td>Causalgia of right lower limb</td>
</tr>
<tr>
<td>G57.72</td>
<td>Causalgia of left lower limb</td>
</tr>
<tr>
<td>G60.3</td>
<td>Idiopathic progressive neuropathy</td>
</tr>
<tr>
<td>G60.8</td>
<td>Other hereditary and idiopathic neuropathies</td>
</tr>
<tr>
<td>G60.9</td>
<td>Hereditary and idiopathic neuropathy, unspecified</td>
</tr>
<tr>
<td>G62.89</td>
<td>Other specified polyneuropathies</td>
</tr>
<tr>
<td>G62.9</td>
<td>Polyneuropathy, unspecified</td>
</tr>
<tr>
<td>G89.21</td>
<td>Chronic pain due to trauma</td>
</tr>
<tr>
<td>G89.22</td>
<td>Chronic post-thoracotomy pain</td>
</tr>
<tr>
<td>G89.28</td>
<td>Other chronic postprocedural pain</td>
</tr>
<tr>
<td>G89.29</td>
<td>Other chronic pain</td>
</tr>
<tr>
<td>G89.3</td>
<td>Neoplasm related pain (acute) (chronic)</td>
</tr>
<tr>
<td>G89.4</td>
<td>Chronic pain syndrome</td>
</tr>
<tr>
<td>G90.511</td>
<td>Complex regional pain syndrome I of right upper limb</td>
</tr>
<tr>
<td>G90.512</td>
<td>Complex regional pain syndrome I of left upper limb</td>
</tr>
<tr>
<td>G90.513</td>
<td>Complex regional pain syndrome I of upper limb, bilateral</td>
</tr>
<tr>
<td>G90.519</td>
<td>Complex regional pain syndrome I of unspecified upper limb</td>
</tr>
<tr>
<td>G90.521</td>
<td>Complex regional pain syndrome I of right lower limb</td>
</tr>
<tr>
<td>G90.522</td>
<td>Complex regional pain syndrome I of left lower limb</td>
</tr>
<tr>
<td>G90.523</td>
<td>Complex regional pain syndrome I of lower limb, bilateral</td>
</tr>
<tr>
<td>G90.529</td>
<td>Complex regional pain syndrome I of unspecified lower limb</td>
</tr>
<tr>
<td>G90.59</td>
<td>Complex regional pain syndrome I of other specified site</td>
</tr>
<tr>
<td>M54.10</td>
<td>Radiculopathy, Site Unspecified</td>
</tr>
</tbody>
</table>
M54.11 Radiculopathy, occipito-atlanto-axial region
M54.12 Radiculopathy, cervical region
M54.13 Radiculopathy, cervicothoracic region
M54.14 Radiculopathy, thoracic region
M54.15 Radiculopathy, thoracolumbar region
M54.16 Radiculopathy, lumbar region
M54.17 Radiculopathy, lumbosacral region
M54.18 Radiculopathy, sacral and sacrococcygeal region
M79.2 Neuralgia And Neuritis, Unspecified
M96.1 Postlaminectomy syndrome, not elsewhere classified

Description

Chronic Pain
Spinal cord stimulation has been used in a wide variety of chronic refractory pain conditions, including pain associated with cancer, failed back pain syndromes, arachnoiditis, and complex regional pain syndrome (ie, chronic reflex sympathetic dystrophy). There has also been interest in spinal cord stimulation as a treatment of critical limb ischemia, primarily in patients who are poor candidates for revascularization and in patients with refractory chest pain.

Spinal Cord Stimulation
Spinal cord stimulation (also called dorsal column stimulation) involves the use of low-level epidural electrical stimulation of the spinal cord dorsal columns. The neurophysiology of pain relief after spinal cord stimulation is uncertain but may be related to either activation of an inhibitory system or blockage of facilitative circuits.

Spinal cord stimulation devices consist of several components: (1) the lead that delivers the electrical stimulation to the spinal cord; (2) an extension wire that conducts the electrical stimulation from the power source to the lead; and (3) a power source that generates the electricity. The lead may incorporate from 4 to 8 electrodes, with 8 electrodes more commonly used for complex pain patterns. There are 2 basic types of power source: one type, the power source (battery), can be surgically implanted or worn externally with an antenna over the receiver; the other, a radiofrequency receiver, is implanted. Totally implantable systems are most commonly used.

The patient's pain distribution pattern dictates at what level of the spinal cord the stimulation lead is placed. The pain pattern may influence the type of device used. For example, a lead with 8 electrodes may be selected for those with complex pain patterns or bilateral pain. Implantation of the spinal cord stimulator is typically a 2-step process. Initially, the electrode is temporarily implanted in the epidural space, allowing a trial period of stimulation. Once treatment effectiveness is confirmed (defined as at least 50% reduction in pain), the electrodes and radio-receiver/transducer are permanently implanted. Successful spinal cord stimulation may require extensive programming of the neurostimulators to identify the optimal electrode combinations and stimulation channels.

Traditional spinal cord stimulation devices use electrical stimulation with a frequency of 100 to 1000 Hz. In 2015, a spinal cord stimulation device, using a higher frequency (10,000 Hz) than predicate devices, was approved by the U.S. Food and Drug Administration (FDA) through the premarket approval process. High-frequency stimulation is proposed to be associated with fewer paresthesias, which are a recognized effect of spinal cord stimulation. In 2016, the FDA approved a clinician programmer application that allows a spinal cord stimulation device to provide stimulation in bursts rather than at a constant rate. Burst stimulation is proposed to relieve pain with fewer paresthesias. The burst stimulation device works in conjunction with standard spinal cord stimulation devices. With the newly approved app, stimulation is provided in five, 500-Hz burst spikes at a rate of 40 Hz, with a pulse width of 1 ms.

The incidence of adverse events related to spinal cord stimulation have been reported to occur in 30% to 40% of cases.¹ Adverse events can either be hardware-related or biological. Hardware-related complications include lead migration or lead failure or fracture. Biological complications include infection
and pain. More severe biological complications are rare, including dural puncture headache (estimated incidence, up to 0.3%) and neurological damage (estimated incidence, 0.25%).

Other neurostimulators target the dorsal root ganglion. Dorsal root ganglia consist of sensory cell bodies that transmit input from the peripheral nervous system to the central nervous system and play a role in neuropathic pain perception. Dorsal root ganglia are located in the epidural space between spinal nerves and the spinal cord on the posterior root in a minimal amount of cerebrospinal fluid, amenable to epidural access. Two systems targeting the dorsal root ganglion have received approval or clearance from the FDA.

A retrospective analysis of the FDA's Manufacturer and User Facility Device Experience (MAUDE) database provided information on complications related to the use of dorsal root ganglion stimulation. The MAUDE database was queried for dorsal root ganglion stimulation reports through 2017, identifying 979 episodes. Complications were predominantly device-related (47%; lead migration and lead damage), with the remaining comprised of procedural complications (28%; infection, new neurologic symptoms, and dural puncture), patient complaints (12%; site pain and unwanted stimulation), serious adverse events (2.4%), and "other" complications (4.6%). The prevalence of complications cannot be estimated using the MAUDE database; while facilities are mandated to report events, patients and health care providers may report events but are not mandated to do so.

Summary
Spinal cord stimulation delivers low-voltage electrical stimulation to the dorsal columns of the spinal cord to block the sensation of pain; this is achieved through a surgically implanted spinal cord stimulation device, which comes equipped with a radiofrequency receiver. The neurostimulator device is also issued with a standard power source (battery) that can be implanted or worn externally. Other neurostimulators target the dorsal root ganglion.

Treatment-Refractory Chronic Pain
For individuals who have treatment-refractory chronic pain of the trunk or limbs who receive standard spinal cord stimulation, the evidence includes systematic reviews and randomized controlled trials (RCTs). Relevant outcomes are symptoms, functional outcomes, quality of life, medication use, and treatment-related morbidity. Available RCTs are heterogeneous regarding underlying diagnoses in select patient populations. However, the trials including patients with underlying neuropathic pain processes have shown a significant benefit with spinal cord stimulation. Systematic reviews have supported the use of spinal cord stimulation to treat refractory trunk or limb pain, and patients who have failed all other treatment modalities have few options. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have treatment-refractory chronic pain of the trunk or limbs who receive high-frequency spinal cord stimulation, the evidence includes 3 RCTs. Relevant outcomes are symptoms, functional outcomes, quality of life, medication use, and treatment-related morbidity. One RCT comparing high-frequency with standard spinal cord stimulation in patients who had not previously been treated with spinal cord stimulation found a clinically and statistically significant benefit associated with high-frequency spinal cord stimulation. Another RCT in patients who had chronic pain despite previous treatment with standard spinal cord stimulation found no benefit for those receiving high-frequency stimulation compared with sham-control; however, it is difficult to compare these findings with other trials of spinal cord stimulation due to the different patient populations, short treatment periods, and the crossover period effect. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have treatment-refractory chronic pain of the trunk or limbs who receive dorsal root ganglion neurostimulation, the evidence includes an RCT and many case series. Relevant outcomes are symptoms, functional outcomes, quality of life, medication use, and treatment-related morbidity. The unblinded RCT found that patients receiving dorsal root ganglion neurostimulation had significantly higher rates of treatment success (physical functioning score and quality of life measures), at 3 and 12 months compared with those receiving standard spinal cord stimulation devices. Dorsal root ganglion neurostimulation was found to be noninferior to spinal cord stimulation in percentage achieving ≥50%
pain reduction, emotional functioning score, and 36-Item Short-Form Health Survey scores. Both groups experienced paresthesias but patients in the dorsal root ganglion group reported less postural variation in paresthesia and reduced extraneous stimulation in nonpainful areas. Rates of serious adverse events were similar between the 2 study arms. While most of the case series were small (sample sizes ranged from 10 to 65), all reported results that were consistent with the RCT results. The largest case series had the longest follow-up, reporting continued improvements in pain and psychological scores through 3 years. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Critical Limb Ischemia
For individuals who have critical limb ischemia who receive spinal cord stimulation, the evidence includes several small RCTs. Relevant outcomes are overall survival, symptoms, functional outcomes, quality of life, morbid events, hospitalizations, and treatment-related morbidity. In some pooled analyses of these RCTs, spinal cord stimulation did not result in a significantly lower rate of amputation, although one meta-analysis that included a nonrandomized study reported a significant difference. The evidence is insufficient to determine the effects of the technology on health outcomes.

Treatment-Refractory Angina Pectoris
For individuals who have treatment-refractory angina pectoris who receive spinal cord stimulation, the evidence includes RCTs. Relevant outcomes are overall survival, symptoms, functional outcomes, quality of life, morbid events, hospitalizations, and treatment-related morbidity. Numerous small RCTs have evaluated spinal cord stimulation as a treatment for refractory angina. While some have reported benefits, most have not. In 2 recent RCTs, there was no significant benefit in the primary outcomes. The evidence is insufficient to determine the effects of the technology on health outcomes.

Heart Failure
For individuals who have heart failure who receive spinal cord stimulation, the evidence includes RCTs. Relevant outcomes are overall survival, symptoms, functional outcomes, quality of life, morbid events, hospitalizations, and treatment (n=66) did not find significant differences between groups but might have been underpowered to do so. The evidence is insufficient to determine the effects of the technology on health outcomes.

Cancer-Related Pain
For individuals who have cancer-related pain who receive spinal cord stimulation, the evidence includes case series. Relevant outcomes are symptoms, functional outcomes, medication use, and treatment-related morbidity. No RCTs evaluating spinal cord stimulation in this population were identified. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2019</td>
<td>Clarified coding information.</td>
</tr>
<tr>
<td>6/2018</td>
<td>BCBSA National medical policy review. Policy clarified to include burst neurostimulation as an alternate programming of a standard SCS device.</td>
</tr>
<tr>
<td>3/2018</td>
<td>Clarified coding information.</td>
</tr>
</tbody>
</table>
Information Pertaining to All Blue Cross Blue Shield Medical Policies
Click on any of the following terms to access the relevant information:
Medical Policy Terms of Use
Managed Care Guidelines
Indemnity/PPO Guidelines
Clinical Exception Process
Medical Technology Assessment Guidelines

References

56. Kallewaard, JJ, Nijhuis, HH, Huygen, FF, Wille, FF, Zuidema, XX, van de Minkelis, JJ, Raza, AA. Prospective Cohort Analysis of DRG Stimulation for Failed Back Surgery Syndrome Pain Following Lumbar Discectomy.. Pain Pract, 2018 Oct 1;19(2). PMID 30269439

