Medical Policy
Orthotics for Progressive Scoliosis

Table of Contents
- Policy: Commercial
- Coding Information
- Information Pertaining to All Policies
- Policy: Medicare
- Description
- References
- Authorization Information
- Policy History
- Endnotes

Policy Number: 550
BCBSA Reference Number: 2.01.83
NCD/LCD: N/A

Related Policies
Vertical Expandable Prosthetic Titanium Rib, #305

Policy¹
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity
Medicare HMO Blue℠ and Medicare PPO Blue℠ Members

A rigid cervical-thoracic-lumbar-sacral or thoracic-lumbar-sacral orthosis may be considered MEDICALLY NECESSARY for the treatment of scoliosis in juvenile and adolescent patients at high-risk of progression which meets the following criteria:
- Idiopathic spinal curve angle between 25° and 40°; AND
- Spinal growth has not been completed (Risser grade 0-3; no more than 1 year post menarche in females)
 OR
- Idiopathic spinal curve angle greater than 20°; AND
- There is documented increase in the curve angle; AND
- At least 2 years’ growth remain (Risser grade 0 or 1; pre-menarche in females).

Use of an orthosis for the treatment of scoliosis that does not meet the criteria above is considered INVESTIGATIONAL.

Prior Authorization Information
Inpatient
- For services described in this policy, precertification/preauthorization IS REQUIRED for all products if the procedure is performed inpatient.

Outpatient
- For services described in this policy, see below for products where prior authorization might be required if the procedure is performed outpatient.

<table>
<thead>
<tr>
<th>Commercial Managed Care (HMO and POS)</th>
<th>Outpatient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior authorization is not required.</td>
<td></td>
</tr>
</tbody>
</table>
Commercial PPO and Indemnity
Prior authorization is **not required**.

Medicare HMO Blue℠
Prior authorization is **not required**.

Medicare PPO Blue℠
Prior authorization is **not required**.

CPT Codes / HCPCS Codes / ICD Codes
Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following codes are **included below for informational purposes only; this is not an all-inclusive list**.

The above **medical necessity criteria MUST** be met for the following codes to be covered for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue:

HCPCS Codes

<table>
<thead>
<tr>
<th>HCPCS codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1000</td>
<td>Cervical-thoracic-lumbar-sacral orthotic (CTLSO) (Milwaukee), inclusive of furnishing initial orthotic, including model</td>
</tr>
<tr>
<td>L1001</td>
<td>Cervical-thoracic-lumbar-sacral orthotic (CTLSO), immobilizer, infant size, prefabricated, includes fitting and adjustment</td>
</tr>
<tr>
<td>L1200</td>
<td>Thoracic-lumbar-sacral orthotic (TLSO), inclusive of furnishing initial orthotic only</td>
</tr>
<tr>
<td>L1300</td>
<td>Other scoliosis procedure, body jacket molded to patient model</td>
</tr>
<tr>
<td>L1310</td>
<td>Other scoliosis procedure, postoperative body jacket</td>
</tr>
</tbody>
</table>

Description

Scoliosis

Scoliosis is an abnormal lateral and rotational curvature of the vertebral column. Adolescent idiopathic scoliosis is the most common form of idiopathic scoliosis, defined by the U.S. Preventive Services Task Force as “a lateral curvature of the spine with onset at ≥10 years of age, no underlying etiology, and risk for progression during puberty.” Progression of the curvature during periods of rapid growth can result in deformity, accompanied by cardiopulmonary complications. Diagnosis is made clinically and radiographically. The curve is measured by the Cobb angle, which is the angle formed between intersecting lines drawn perpendicular to the top of the vertebrae of the curve and the bottom vertebrae of the curve. Patients with adolescent idiopathic scoliosis are also assessed for skeletal maturity, using the Risser sign, which describes the level of ossification of the iliac apophysis.

The Risser sign measures remaining spinal growth by progressive anterolateral to posteromedial ossification. Risser sign ranges from 0 (no ossification) to 5 (full bony fusion of the apophysis). Immature patients will have 0% to 25% ossification (Risser grade 0 or 1), while 100% ossification (Risser grade 5) indicates maturity with no spinal growth remaining. Children may progress from a Risser grade 1 to grade 5 over a brief (eg, 2-year), period.

Treatment

Treatment of scoliosis currently depends on three factors: the cause of the condition (idiopathic, congenital, secondary), the severity of the condition (degrees of the curve), and the growth of the patient remaining at the time of presentation. Children who have vertebral curves measuring between 25° and 40° with at least 2 years of growth remaining are considered to be at high-risk of curve progression. Genetic markers to evaluate the risk of progression are also being evaluated. Because severe deformity may lead to compromised respiratory function and is associated with back pain in adulthood, surgical intervention with spinal fusion is typically recommended for curves that progress to 45° or more.
Bracing
Bracing is used to reduce the need for spinal fusion by slowing or preventing further progression of the curve during rapid growth. Commonly used brace designs include the Milwaukee, Wilmington, Boston, Charleston, and Providence orthoses. The longest clinical experience is with the Milwaukee cervical-thoracic-lumbar-sacral orthosis. Thoracic-lumbar-sacral orthoses, such as the Wilmington and Boston braces, are intended to improve tolerability and compliance for extended (>18-hour) wear and are composed of lighter weight plastics with a low profile (underarm) design. The design of the nighttime Charleston and Providence braces is based on the theory that increased corrective forces will reduce the needed wear time (ie, daytime), thereby lessening social anxiety and improving compliance. The smart brace consists of a standard rigid brace with a microcomputer system, a force transducer, and an air-bladder control system to control the interface pressure. Braces that are more flexible than thoracic-lumbar-sacral orthoses or nighttime braces, such as the SpineCor, are also being evaluated. The SpineCor is composed of a thermoplastic pelvic base with stabilizing and corrective bands across the upper body.

Summary
Orthotic bracing attempts to slow spinal curve progression and reduce the need for fusion surgery in patients with juvenile or adolescent idiopathic scoliosis who are at high-risk of progression. Vertebral body stapling and vertebral body tethering, both fusionless surgical procedures, have been evaluated to determine whether the procedures could be used as alternatives to traditional orthotic bracing. This review does not address patients who are not at high-risk of progression or conventional fusion surgery for scoliosis, such as patients with Cobb angles measuring 45° or more.

For individuals who have juvenile or adolescent idiopathic scoliosis at high-risk of progression who receive a conventional rigid brace, the evidence includes a high-quality randomized controlled trial. The relevant outcomes are change in disease status, morbid events, quality of life, and treatment-related morbidity. Bracing has been considered the only option to prevent curve progression in juvenile or adolescent idiopathic scoliosis. The highest quality study on bracing is a sizable 2013 National Institutes of Health-sponsored trial that, using both randomized and observational arms, compared bracing with watchful waiting. This trial was stopped after interim analysis because of a significant benefit of bracing for the prevention of spinal fusion. Based on several factors (evidence of efficacy, lack of alternative treatment options, professional society recommendations, potential to prevent the need for a more invasive procedure), bracing with a conventional rigid brace is considered an option for the treatment of scoliosis in patients with a high-risk of curve progression. A study with long-term follow-up (mean, 15 years) has also shown that curvature corrections with bracing were maintained. Curves have a high-risk of progression when they measure 25° or more, and spinal growth has not been completed, or when a 20° curve is progressively worsening and at least 2 years of growth remain. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have juvenile or adolescent idiopathic scoliosis at high-risk of progression who receive a microcomputer-controlled brace, the evidence includes a pilot randomized controlled trial. The relevant outcomes are change in disease status, morbid events, quality of life, and treatment-related morbidity. A pilot randomized trial using a microcomputer-controlled brace reported improved outcomes compared with the use of a standard rigid brace; however, the low number of individuals included in the trial ultimately limited the interpretation of these results. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have juvenile or adolescent idiopathic scoliosis at high-risk of progression who receive a flexible brace, the evidence includes a randomized and a nonrandomized comparative study. The relevant outcomes are change in disease status, morbid events, quality of life, and treatment-related morbidity. One randomized controlled trial evaluating a flexible brace did not show equivalent outcomes compared with conventional brace designs. Another study has suggested the flexible brace might improve outcomes compared with no treatment, but this study had design flaws, which interfered with drawing significant conclusions from the study. The evidence is insufficient to determine the effects of the technology on health outcomes.
For individuals who have juvenile or adolescent idiopathic scoliosis at high-risk of progression who receive vertebral body stapling, the evidence includes a comparative cohort study and case series. The relevant outcomes are change in disease status, morbid events, quality of life, and treatment-related morbidity. There is a small body of published evidence on surgical interventions for preventing curve progression in juvenile and adolescent idiopathic scoliosis. Vertebral body stapling with memory shape staples may control some thoracic curves between 20° and 35° but it is less effective than bracing for larger curves. The evidence is composed primarily from a center that developed the technique, along with a few case series from other institutions. Additional study with larger sample sizes and longer follow-up is needed to evaluate the safety and efficacy of this procedure. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/2016</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>6/2013</td>
<td>New references from BCBSA National medical policy.</td>
</tr>
<tr>
<td>5/1/12</td>
<td>New policy describing ongoing coverage and non-coverage.</td>
</tr>
</tbody>
</table>

Information Pertaining to All Blue Cross Blue Shield Medical Policies

Click on any of the following terms to access the relevant information:

- Medical Policy Terms of Use
- Managed Care Guidelines
- Indemnity/PPO Guidelines
- Clinical Exception Process
- Medical Technology Assessment Guidelines

References

12. Guo J, Lam TP, Wong MS, et al. A prospective randomized controlled study on the treatment outcome of SpineCor brace versus rigid brace for adolescent idiopathic scoliosis with follow-up according to the SRS standardized criteria. Eur Spine J. Dec 2014;23(12):2650-2657. PMID 24378629

Endnotes

1 Based on MPRM 2.01.83 and expert opinion