Medical Policy

Genetic Testing for Lactase Insufficiency

Table of Contents

- Policy: Commercial
- Policy: Medicare
- Authorization Information
- Coding Information
- Description
- Policy History
- Information Pertaining to All Policies
- References

Policy Number: 565
BCBSA Reference Number: 2.04.94
NCD/LCD: Local Coverage Determination (LCD): Molecular Pathology Procedures (L35000)

Related Policies
None

Policy

Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity

The use of targeted -13910 C>T mutation analysis for the prediction of lactase insufficiency is INVESTIGATIONAL.

Medicare HMO BlueSM and Medicare PPO BlueSM Members

Medical necessity criteria and coding guidance for Medicare Advantage members living in Massachusetts can be found through the link below.

Local Coverage Determination (LCD): Molecular Pathology Procedures (L35000)

For medical necessity criteria and coding guidance for Medicare Advantage members living outside of Massachusetts, please see the Centers for Medicare and Medicaid Services website for information regarding your specific jurisdiction at https://www.cms.gov.

Prior Authorization Information

Pre-service approval is required for all inpatient services for all products. See below for situations where prior authorization may be required or may not be required.

Yes indicates that prior authorization is required.
No indicates that prior authorization is not required.
N/A indicates that this service is primarily performed in an inpatient setting.

| Outpatient |
|-------------|---|
| Commercial Managed Care (HMO and POS) | This is not a covered service. |
| Commercial PPO and Indemnity | This is not a covered service. |
| Medicare HMO BlueSM | No |
CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

CPT Codes

<table>
<thead>
<tr>
<th>CPT codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>81400</td>
<td>Molecular pathology procedure, Level 1 (e.g., identification of single germline variant [e.g., SNP] by techniques such as restriction enzyme digestion or melt curve analysis) includes the following test effective 7/1/13: LCT (lactase-phlorizin hydrolase) (e.g., lactose intolerance), 13910 C>T variant</td>
</tr>
</tbody>
</table>

Description

LACTASE

The predominant carbohydrate in milk is the disaccharide, lactose, comprising the simple sugars, glucose and galactose. The brush-border enzyme, lactase (also called lactase-phlorizin hydrolase), hydrolyzes lactose into its monosaccharide components, which are absorbable by the intestinal mucosa. Except in rare instances of congenital hypolactasia, most infants can produce lactase, and enzyme levels are highest at birth. Sometime after weaning in most children, there is a decrease in lactase production through a multifactorial process that is regulated at the gene transcription level.¹

The decrease in lactase level varies significantly by ethnic group both in terms of the lowest level of lactase and time from weaning necessary to reach the nadir of lactase activity.² By 2 to 12 years of age, 2 groups emerge: a group with insufficient levels of lactase activity (primary hypolactasia or lactase nonpersistence) and a group that retains the infant level of lactase activity through adulthood (lactase persistence).³ Ethnic groups with the highest prevalences of lactase insufficiency are Asian, Native Americans, and blacks, with the lowest prevalences in people of northern European origin (see Table 1).

Table 1. Prevalence of Lactase Insufficiency by Ethnicity⁴

<table>
<thead>
<tr>
<th>Populations</th>
<th>Percent Lactase Insufficiency, a %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Europeans</td>
<td>2-15</td>
</tr>
<tr>
<td>American whites</td>
<td>6-22</td>
</tr>
<tr>
<td>Central Europeans</td>
<td>9-23</td>
</tr>
<tr>
<td>Northern Indians</td>
<td>20-30</td>
</tr>
<tr>
<td>Southern Indians</td>
<td>60-70</td>
</tr>
<tr>
<td>Hispanics</td>
<td>50-80</td>
</tr>
<tr>
<td>Ashkenazi Jews</td>
<td>60-80</td>
</tr>
<tr>
<td>Blacks</td>
<td>60-80</td>
</tr>
<tr>
<td>American Indians</td>
<td>80-100</td>
</tr>
<tr>
<td>Asians</td>
<td>95-100</td>
</tr>
</tbody>
</table>

a Identified through hydrogen breath test or lactose tolerance blood test.

Several terms are used to describe lactose malabsorption: lactase insufficiency, lactose malabsorption, and lactose intolerance. We discuss each below.

Lactase Insufficiency

Lactase insufficiency (lactase nonpersistence or primary hypolactasia) indicates that lactase activity is a fraction of the original infantile level. Direct measurement of lactase activity is tested biochemically through duodenal biopsy.⁵ Lactase insufficiency is highly correlated with the C/C genotype at -13910 in the lactase promoter region. In adults homozygous for the lactase persistence genotype (T/T), lactase
levels are approximately 10 times higher than in those who are homozygous lactase insufficient (C/C); heterozygous persons (C/T) have intermediate lactase activity levels. In heterozygous people, symptoms of lactose intolerance may appear if the quantity of ingested lactose exceeds the maximum digestible by the reduced level of lactase.

Lactose Malabsorption
Lactose malabsorption indicates that a large portion of lactose cannot be absorbed in the small bowel and is delivered to the colon. Malabsorption is tested by hydrogen breath test (HBT) or lactose tolerance blood test.

Lactose Intolerance
Lactose intolerance indicates that lactose malabsorption causes gastrointestinal symptoms. There is no genetic test for lactose intolerance; demonstration of lactose intolerance requires patients to self-report symptoms (listed in Table 2) after lactose ingestion. Diagnosis of lactose intolerance is highly susceptible to the placebo effect, and studies should conduct a blinded lactose challenge with an indistinguishable placebo. A 2010 meta-analysis by Jellema et al has indicated that no specific patient complaint could predict lactose malabsorption; for common lactose intolerance symptoms, sensitivity and specificity ranged from 0% to 90% and 18% to 96%, respectively. Similarly, patient self-reported milk intolerance was inaccurate for predicting lactose malabsorption, with sensitivity and specificity ranging from 30% to 70% and 25% to 87%, respectively.

Table 2. Symptoms of Lactose Intolerance

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Percent of Total Patients Who Experience Symptom, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gut-related symptoms</td>
<td></td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>100</td>
</tr>
<tr>
<td>Gut distention</td>
<td>100</td>
</tr>
<tr>
<td>Borborygmi (stomach rumbling)</td>
<td>100</td>
</tr>
<tr>
<td>Flatulence</td>
<td>100</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>70</td>
</tr>
<tr>
<td>Nausea</td>
<td>78</td>
</tr>
<tr>
<td>Vomiting</td>
<td>78</td>
</tr>
<tr>
<td>Constipation</td>
<td>30</td>
</tr>
<tr>
<td>Systemic symptoms</td>
<td></td>
</tr>
<tr>
<td>Headache and light headedness</td>
<td>86</td>
</tr>
<tr>
<td>Loss of concentration and poor short-term memory</td>
<td>82</td>
</tr>
<tr>
<td>Muscle pain</td>
<td>71</td>
</tr>
<tr>
<td>Joint pain and/or swelling</td>
<td>71</td>
</tr>
<tr>
<td>Long-term fatigue</td>
<td>63</td>
</tr>
<tr>
<td>Allergy (eczema, pruritus, rhinitis, sinusitis, asthma)</td>
<td>40</td>
</tr>
<tr>
<td>Mouth ulcers</td>
<td>30</td>
</tr>
<tr>
<td>Heart arrhythmia</td>
<td>24</td>
</tr>
<tr>
<td>Increased frequency of micturition</td>
<td><20</td>
</tr>
<tr>
<td>Sore throat</td>
<td><20</td>
</tr>
</tbody>
</table>

Symptoms
Lactase insufficiency is common, occurring in approximately 70% of persons after weaning. Lactase insufficiency results in lactose malabsorption, which may lead to symptoms of lactose intolerance such as abdominal pain, bloating, diarrhea, and increased flatulence, caused by bacterial fermentation of undigested lactose in the colon. However, the demonstration of lactose malabsorption does not necessarily indicate that a person will be symptomatic. Factors that determine whether a person with lactose malabsorption will develop symptoms include the dose of lactose ingested; residual intestinal lactase activity; ingestion of food along with lactose; ability of the colonic flora to ferment lactose; and
individual sensitivity to the products of lactose fermentation. Because of these factors, the number of persons reporting symptoms of lactose intolerance is likely only a portion of those who are lactase insufficient. Also, lactose malabsorption may be secondary (secondary hypolactasia) to acquired conditions, such as small bowel bacterial overgrowth; infectious enteritis; mucosal damage due to celiac disease; inflammatory bowel disease; antibiotics; gastrointestinal surgery; short bowel syndrome; radiation enteritis; or other conditions that may lead to reduced lactase expression in the small intestine.⁶

LACTASE INSUFFICIENCY

Clinical Diagnosis

Mucosal biopsy of the duodenum followed by biochemical lactase assay to directly measure lactase activity is the criterion standard for diagnosing lactase insufficiency. Although this approach also may exclude other causes of secondary lactose malabsorption, utility is limited due to the invasiveness of the procedure and the patchy expression of lactase in the duodenum.

Two common alternatives to this direct method of measuring lactase activity are the HBT and the lactose tolerance blood test, which measure lactose malabsorption. Because lactose malabsorption is nearly always attributable to lactase insufficiency, this typically can be imputed from assessment of lactose malabsorption.³

The HBT measures by gas chromatography the amount of hydrogen exhaled for up to 3 hours after ingesting 25 to 50 g of lactose. Persons undergoing HBT are required to fast overnight and refrain from activities that may elevate breath hydrogen during testing. A rise in breath hydrogen of 0.31 to 2.5 mL/min is indicative of bacterial fermentation from malabsorbed lactose. A negative HBT can exclude lactose malabsorption as the cause of symptoms, and a positive result indicates that symptoms may be attributable to lactose ingestion.³ The following factors are associated with increased breath hydrogen and may cause false-positive results if present at the time of testing:

- Diabetes
- Small bowel disease (eg, celiac, giardiasis)
- Bacterial overgrowth
- Altered colon pH
- Antibiotic usage
- Probiotic usage
- Smoking
- Exercise
- Aspirin usage
- Colonic bacterial adaptation.

The lactose tolerance blood test measures blood glucose increase over time with blood drawn at 15, 30, 60, and 90 minutes after ingesting a 25- to 50-g dose of lactose. A glucose increase of less than 20 mg/dL above an 8-hour fasting level indicates an abnormal test. The following factors are associated with increased blood sugar when undergoing a lactose tolerance test and may cause false-positive results:

- Diabetes
- Small bowel disease (eg, celiac, giardiasis)
- Thyroid disorders
- Motility disorders (stomach, small bowel)
- Bacterial overgrowth.

Molecular Diagnosis

In 2002, Enattah et al identified the first DNA variant to control transcription of lactase.¹⁰ This variant, -13910C>T, is located in a noncoding region of the MCM6 gene that is upstream of the lactase gene (LCT). The less common T allele has been associated with lactase persistence and has demonstrated an autosomal dominant pattern of inheritance. This variant is thought to be related to the domestication of animals during the last 10,000 to12,000 years, and persons with the C/C genotype have been shown to
be associated strongly with a lactase insufficiency phenotype in whites. Other variants in the same \textit{MCM6} regulatory region are associated with other ethnic groups (eg, Africans, Arabs), but prevalence varies geographically and, to date, no commercially available testing kits have incorporated these variants.

Prometheus’s (San Diego, CA) \textit{LactoTYPE®} is a commercially available polymerase chain reaction–based test that assesses the most common lactase nonpersistence variant, \textit{MCM6} -13910C>T, in patients with suspected lactose intolerance. Fulgent Clinical Diagnostics Lab (Temple City, CA) also offers \textit{MCM6} sequencing and deletion/duplication analysis using next-generation sequencing. Demonstration of the C/C genotype can be used as indirect evidence of lactase insufficiency and lactose malabsorption.

\textbf{Treatment}

The goal of treatment should be to ensure adequate nutrition for skeletal health. For patients with lactase insufficiency, dietary adjustment to restrict the consumption of foods containing lactose is the principal form of therapy. However, even lactose maldigesters can usually tolerate small amounts of lactose (12 g/d) with no or minimal symptoms. Lactase enzyme preparations are available for symptom relief but may not be effective in all patients.

\textbf{Summary}

Genetic testing of adults with suspected lactase insufficiency is proposed as an alternative to current diagnostic practices, which include hydrogen breath test, lactose tolerance blood test, and intestinal biopsy.

For individuals with lactase insufficiency who receive targeted testing for the -13910C>T variant, the evidence includes genotype-phenotype studies and meta-analysis. Relevant outcomes are symptoms, morbid events, functional outcomes, health status measures, and quality of life. Studies have demonstrated a high correlation between the -13910C>T single-nucleotide variant upstream of the gene encoding the enzyme lactase, and lactase insufficiency in persons of European ancestry. Studies in white populations have reported a high degree of agreement for the diagnosis of lactase insufficiency between genotyping and both hydrogen breath test and lactose tolerance blood test. However, there is no current treatment for lactase insufficiency, and management involves dietary restriction and palliation of lactose intolerance symptoms. Therefore, an empirical diagnosis of lactose intolerance in the absence of confirmation by hydrogen breath test, lactose tolerance blood test, or genotyping, followed by treatment with dietary restriction of lactose, is suitable. Currently the evidence does not support the conclusion that assessment of the genetic etiology of lactose intolerance would affect patient management or improve clinical outcomes. The evidence is insufficient to determine the effects of the technology on health outcomes.

\textbf{Policy History}

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/2015</td>
<td>Local Coverage Determination (LCD): Molecular Pathology Procedures (L34506) added.</td>
</tr>
<tr>
<td>6/2015</td>
<td>New references added from BCBSA National medical policy. 6/1/2015</td>
</tr>
</tbody>
</table>

\textbf{Information Pertaining to All Blue Cross Blue Shield Medical Policies}

Click on any of the following terms to access the relevant information:

\textit{Medical Policy Terms of Use}
\textit{Managed Care Guidelines}
\textit{Indemnity/PPO Guidelines}
\textit{Clinical Exception Process}
References

