Medical Policy
Ophthalmologic Techniques That Evaluate the Posterior Segment for Glaucoma

Table of Contents
- Policy: Commercial
- Policy: Medicare
- Authorization Information
- Description
- Policy History
- Information Pertaining to All Policies
- References
- Coding Information
- Endnotes

Policy Number: 053
BCBSA Reference Number: 9.03.06
NCD/LCD: Local Coverage Determination (LCD): Scanning Computerized Ophthalmic Diagnostic Imaging (SCODI) (L34380)

Related Policies
Optical Coherence Tomography of the Anterior Eye Segment, #084

Policy¹
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity

Retinal nerve fiber analysis (RNFA), also known as scanning computerized ophthalmic diagnostic imaging (SCODI), which includes two methods of SCODI (confocal scanning laser ophthalmoscopy and scanning laser polarimetry), in addition to posterior segment optical coherence tomography, may be MEDICALLY NECESSARY for the following indications:

- To diagnose early glaucoma and monitor glaucoma treatment,
- To differentiate causes of other optic nerve disorders when a diagnosis is in doubt,
- To diagnose and manage the patient's condition when visual field results are insufficient; or when reliable visual field testing cannot be performed, due to visual, physical, mental, or age constraints,
- To differentiate when a discrepancy exists between the clinical appearance of the optic nerve and the visual fields,
- To detect further loss of optic nerve or retinal nerve fiber layer changes in the presence of advanced optic nerve damage and advanced visual field loss,
- To diagnose and manage medically and surgically retinal and neuro-ophthalmic diseases which involve changes in the optic nerve, subretinal and intraretinal changes, vitreo-retinal relationships, and changes in the nerve fiber layer, and
- To follow glaucoma suspects.

Retinal nerve fiber analysis and SCODI (also known as confocal scanning laser polarimetry and scanning laser polarimetry), including optical coherence tomography, for conditions not listed above (including, but not limited to, screening) is INVESTIGATIONAL.
The measurement of ocular blood flow, pulsatile ocular blood flow, or blood flow velocity in the diagnosis and follow-up of patients with glaucoma is INVESTIGATIONAL.

Medicare HMO Blue™ and Medicare PPO Blue™ Members

Medical necessity criteria and coding guidance for Medicare Advantage members living in Massachusetts can be found through the link below.

Local Coverage Determination (LCD): Scanning Computerized Ophthalmic Diagnostic Imaging (SCODI) (L34380)

For medical necessity criteria and coding guidance for Medicare Advantage members living outside of Massachusetts, please see the Centers for Medicare and Medicaid Services website for information regarding your specific jurisdiction at https://www.cms.gov.

Prior Authorization Information

Pre-service approval is required for all inpatient services for all products. See below for situations where prior authorization may be required or may not be required. Yes indicates that prior authorization is required. No indicates that prior authorization is not required. N/A indicates that this service is primarily performed in an inpatient setting.

<table>
<thead>
<tr>
<th>Outpatient</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Managed Care (HMO and POS)</td>
<td>No</td>
</tr>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>No</td>
</tr>
<tr>
<td>Medicare HMO Blue™</td>
<td>No</td>
</tr>
<tr>
<td>Medicare PPO Blue™</td>
<td>No</td>
</tr>
</tbody>
</table>

CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following codes are included below for informational purposes only; this is not an all-inclusive list.

The above medical necessity criteria MUST be met for the following codes to be covered for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue:

CPT Codes

<table>
<thead>
<tr>
<th>CPT codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>92133</td>
<td>Scanning computerized ophthalmic diagnostic imaging, posterior segment, with interpretation and report, unilateral or bilateral; optic nerve</td>
</tr>
<tr>
<td>92134</td>
<td>Scanning computerized ophthalmic diagnostic imaging, posterior segment, with interpretation and report, unilateral or bilateral; retina</td>
</tr>
</tbody>
</table>

The following CPT code is considered investigational for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue:
CPT Codes

<table>
<thead>
<tr>
<th>CPT codes</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0198T</td>
<td>Measurement of ocular blood flow by repetitive intraocular pressure sampling, with interpretation and report</td>
</tr>
</tbody>
</table>

Description

GLAUCOMA

Glaucoma is characterized by degeneration of the optic nerve (optic disc). Elevated intraocular pressure (IOP) has long been thought to be the primary etiology, but the relation between IOP and optic nerve damage varies among patients, suggesting a multifactorial origin. For example, some patients with clearly elevated IOP will show no optic nerve damage, while others with marginal or no pressure elevation will show optic nerve damage. The association between glaucoma and other vascular disorders (e.g., diabetes, hypertension) suggests vascular factors may play a role in glaucoma. Specifically, it has been hypothesized that reductions in blood flow to the optic nerve may contribute to the visual field defects associated with glaucoma.

Diagnosis and Management

A comprehensive ophthalmologic exam is required for the diagnosis of glaucoma, but no single test is adequate to establish diagnosis. A comprehensive ophthalmologic examination includes assessment of the optic nerve, evaluation of visual fields, and measurement of ocular pressure. The presence of characteristic changes in the optic nerve or abnormalities in visual field, together with increased IOP, is sufficient for a definitive diagnosis. However, some patients will show ophthalmologic evidence of glaucoma with normal IOPs. These cases of normal tension glaucoma (NTG) are considered to be a type of primary open-angle glaucoma (POAG). Angle-closure glaucoma is another type of glaucoma associated with an increase in IOP. The increased IOP in angle-closure glaucoma arises from a reduction in aqueous outflow from the eye due to a closed angle in the anterior chamber. Diagnosis of angle-closure glaucoma is detailed in policy #084.

Conventional management of patients with glaucoma principally involves drug therapy to control elevated IOPs, and serial evaluation of the optic nerve, to follow disease progression. Standard methods of evaluation include careful direct examination of the optic nerve using ophthalmoscopy or stereophotography, or evaluation of visual fields. There is interest in developing more objective, reproducible techniques both to document optic nerve damage and to detect early changes in the optic nerve and retinal nerve fiber layer (RNFL) before the development of permanent visual field deficits. Specifically, evaluating changes in RNFL thickness has been investigated as a technique to diagnose and monitor glaucoma. However, IOP reduction is not effective in decreasing disease progression in a significant number of patients, and in patients with NTG, there is never an increase in IOP. It has been proposed that vascular dysregulation is a significant cause of damage to the RNFL, and there is interest in measuring ocular blood flow as both a diagnostic and a management tool for glaucoma. Changes in blood flow to the retina and choroid may be particularly relevant for diagnosis and treatment of NTG. A variety of techniques have been developed, as described below. (Note: This evidence review only addresses techniques related to the evaluation of the optic nerve, RNFL, or blood flow to the retina and choroid in patients with glaucoma.)

Techniques to Evaluate the Optic Nerve and RNFL

Confocal Scanning Laser Ophthalmoscopy

Confocal scanning laser ophthalmoscopy (CSLO) is an image acquisition technique intended to improve the quality of the eye examination compared with standard ophthalmologic examination. A laser is scanned across the retina along with a detector system. Only a single spot on the retina is illuminated at any time, resulting in a high-contrast image of great reproducibility that can be used to estimate RNFL thickness. In addition, this technique does not require maximal mydriasis, which may be problematic in patients with glaucoma. The Heidelberg Retinal Tomograph is probably the most common example of this technology.
Scanning Laser Polarimetry

The RNFL is birefringent (or bioreflective), meaning that it causes a change in the state of polarization of a laser beam as it passes. A 780-nm diode laser is used to illuminate the optic nerve. The polarization state of the light emerging from the eye is then evaluated and correlated with RNFL thickness. Unlike CSLO, scanning laser polarimetry (SLP) can directly measure the thickness of the RNFL. GDx is a common SLP device. GDx contains a normative database and statistical software package that compare scan results with age-matched normal subjects of the same ethnic origin. The advantages of this system are that images can be obtained without pupil dilation and evaluation can be completed in 10 minutes. Current instruments have added enhanced and variable corneal compensation technology to account for corneal polarization.

Optical Coherence Tomography

Optical coherence tomography (OCT) uses near-infrared light to provide direct cross-sectional measurement of the RNFL. The principles employed are similar to those used in B-mode ultrasound except light, not sound, is used to produce the 2-dimensional images. The light source can be directed into the eye through a conventional slit-lamp biomicroscope and focused onto the retina through a typical 78-diopter lens. This system requires dilation of the patient’s pupil. OCT analysis software is being developed to include optic nerve head parameters with spectral domain OCT, analysis of macular parameters, and hemodynamic parameters with Doppler OCT and OCT angiography.

Pulsatile Ocular Blood Flow

The pulsatile variation in ocular pressure results from the flow of blood into the eye during cardiac systole. Pulsatile ocular blood flow can thus be detected by the continuous monitoring of intraocular pressure. The detected pressure pulse can then be converted into a volume measurement using the known relation between ocular pressure and ocular volume. Pulsatile blood flow is primarily determined by the choroidal vessels, particularly relevant to patients with glaucoma, because the optic nerve is supplied in large part by choroidal circulation.

Techniques to Measure Ocular Blood Flow

A number of techniques have been developed to assess ocular blood flow. They include laser speckle flowgraphy, color Doppler imaging, Doppler Fourier domain OCT, laser Doppler velocimetry, confocal scanning laser Doppler flowmetry, and retinal functional imaging.¹

Laser Speckle Flowgraphy

Laser speckle is detected when a coherent light source such as laser light is dispersed from a diffusing surface such as retinal and choroidal vessels and the circulation of the optic nerve head. The varying patterns of light can be used to determine red blood cell velocity and retinal blood flow. However, due to differences in the tissue structure in different eyes, flux values cannot be used for comparisons between eyes. This limitation may be overcome by subtracting background choroidal blood flow results from the overall blood flow results in the region of interest.

Color Doppler Imaging

Color Doppler imaging has also been investigated as a technique to measure the blood flow velocity in the retinal and choroidal arteries. This technique delivers ultrasound in pulsed Doppler mode with a transducer set on closed eyelids. The examination takes 30 to 40 minutes, and is most effective for the mean velocity of large ophthalmic vessels such as the ophthalmic artery, the central retinal artery, and the short posterior ciliary arteries. However, total blood flow cannot be determined with this technique, and imaging is highly dependent on probe placement.

Doppler Fourier Domain OCT

Doppler Fourier domain OCT is a noncontact imaging technique that detects the intensity of the light scattered back from erythrocytes as they move in the vessels of the ocular tissue. This induces a frequency shift that represents the velocity of the blood in the ocular tissue.
Laser Doppler Velocimetry
Laser Doppler velocimetry compares the frequency of reflected laser light from a moving particle to stationary tissue.

Confocal Scanning Laser Doppler Flowmetry
Confocal scanning laser Doppler flowmetry combines laser Doppler flowmetry with confocal scanning laser tomography. Infrared laser light is used to scan the retina, and the frequency and amplitude of Doppler shifts are determined from the reflected light. Determinations of blood velocity and blood volume are used to compute the total blood flow and create a physical map of retinal flow values.

Summary
Several techniques have been developed to measure the thickness of the optic nerve and retinal nerve fiber layer as a method to diagnose glaucoma. Measurement of ocular blood flow is also being evaluated as a diagnostic tool for glaucoma.

For individuals who have glaucoma or suspected glaucoma who receive imaging of the optic nerve and retinal nerve fiber layer, the evidence includes studies on diagnostic accuracy. Relevant outcomes are test accuracy, symptoms, morbid events, functional outcomes, and medication use. Confocal scanning laser ophthalmoscopy (CSLO), scanning laser polarimetry (SLP), and optical coherence tomography (OCT) can be used to evaluate the optic nerve and retinal nerve fiber layer in patients with glaucoma and suspected glaucoma. Numerous articles have described findings from patients with known and suspected glaucoma using CSLO, SLP, and OCT. These studies have reported that abnormalities may be detected on these examinations before functional changes are noted. The literature and specialty society guidelines have indicated that optic nerve analysis using CSLO, SLP, and OCT are established add-on tests that may be used to diagnose and manage patients with glaucoma and suspected glaucoma. These results are often considered along with other findings to make diagnostic and therapeutic decisions about glaucoma care, including use of topical medication, monitoring, and surgery to lower intraocular pressure. Thus, accurate diagnosis of glaucoma would be expected to reduce the progression of glaucoma. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have glaucoma or suspected glaucoma who receive evaluation of ocular blood flow, the evidence includes association studies. Relevant outcomes are test accuracy, symptoms, morbid events, functional outcomes, and medication use. Techniques to measure ocular blood flow or ocular blood velocity are used to determine appropriate glaucoma treatment options. The data for these techniques remain limited. Literature reviews have not identified studies on the technical performance of these tests (eg, test-retest reliability), whether these technologies improve diagnostic accuracy, or whether they improve health outcomes in patients with glaucoma. Some have suggested that these parameters may inform understanding of the variability in visual field changes in patients with glaucoma, ie, they may help explain why patients with similar levels of intraocular pressure develop markedly different visual impairments. However, data on use of ocular blood flow, pulsatile ocular blood flow, and/or blood flow velocity are currently lacking. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/2017</td>
<td>BCBSA National medical policy review. Doppler ultrasonography removed from the third policy statement. The intent of the policy statement is unchanged. Title changed. 5/1/2017</td>
</tr>
<tr>
<td>12/2016</td>
<td>Clarified coding information.</td>
</tr>
<tr>
<td>11/2016</td>
<td>Clarified coding information.</td>
</tr>
<tr>
<td>10/2016</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>10/2016</td>
<td>Clarified coding information.</td>
</tr>
<tr>
<td>4/2015</td>
<td>Clarified coding information.</td>
</tr>
<tr>
<td>3/2015</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
</tbody>
</table>
Information Pertaining to All Blue Cross Blue Shield Medical Policies
Click on any of the following terms to access the relevant information:
Medical Policy Terms of Use
Managed Care Guidelines
Indemnity/PPO Guidelines
Clinical Exception Process
Medical Technology Assessment Guidelines

References

Endnotes

1 Based on expert opinion