Medical Policy

Extracorporeal Shock Wave Treatment for Plantar Fasciitis and Other Musculoskeletal Conditions

Table of Contents
- **Policy: Commercial**
- **Policy: Medicare**
- **Authorization Information**
- **Coding Information**
- **Description**
- **Policy History**
- **Information Pertaining to All Policies**
- **References**

Policy Number: 081
BCBSA Reference Number: 2.01.40

Related Policies
None

Policy

Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Medicare HMO Blue℠ and Medicare PPO Blue℠ Members

Extracorporeal shock wave therapy (ESWT), using either a high or low-dose protocol or radial ESWT, is **INVESTIGATIONAL** as a treatment of musculoskeletal conditions, including but not limited to:

- Plantar fasciitis
- Tendinopathies including tendinitis of the shoulder, achilles tendinitis, tendinitis of the elbow (lateral epicondylitis), and patellar tendinitis;
- Stress fractures;
- Avascular necrosis of the femoral head;
- Delayed union and nonunion of fractures; and
- Spasticity.

Prior Authorization Information

Inpatient
- For services described in this policy, precertification/preauthorization **IS REQUIRED** for all products if the procedure is performed **inpatient**.

Outpatient
- For services described in this policy, see below for products where prior authorization **might be required** if the procedure is performed **outpatient**.

<table>
<thead>
<tr>
<th>Outpatient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Managed Care (HMO and POS)</td>
</tr>
</tbody>
</table>
CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following codes are included below for informational purposes only; this is not an all-inclusive list.

The following CPT codes are considered investigational for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue:

CPT Codes

<table>
<thead>
<tr>
<th>CPT codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>28890</td>
<td>Extracorporeal shock wave, high energy, performed by a physician, requiring anesthesia other than local, including ultrasound guidance, involving the plantar fascia</td>
</tr>
<tr>
<td>0101T</td>
<td>Extracorporeal shock wave involving musculoskeletal system, not otherwise specified, high energy</td>
</tr>
<tr>
<td>0102T</td>
<td>Extracorporeal shock wave therapy; high energy, performed by a physician, requiring anesthesia other than local, involving lateral humeral epicondyle</td>
</tr>
</tbody>
</table>

Description

Chronic Musculoskeletal Conditions

Chronic musculoskeletal conditions (eg, tendinitis) can be associated with a substantial degree of scarring and calcium deposition. Calcium deposits may restrict motion and encroach on other structures, such as nerves and blood vessels, causing pain and decreased function. One hypothesis is that disruption of calcific deposits by shock waves may loosen adjacent structures and promote resorption of calcium, thereby decreasing pain and improving function.

Plantar Fasciitis

Plantar fasciitis is a common ailment characterized by deep pain in the plantar aspect of the heel, particularly on arising from bed. While the pain may subside with activity, in some patients the pain persists, interrupting activities of daily living. On physical examination, firm pressure will elicit a tender spot over the medial tubercle of the calcaneus. The exact etiology of plantar fasciitis is unclear, although repetitive injury is suspected. Heel spurs are a common associated finding, although it is unproven that heel spurs cause the pain. Asymptomatic heel spurs can be found in up to 10% of the population.

Tendinitis and Tendinopathies

Common tendinitis and tendinopathy syndromes are summarized in Table 1. Many tendinitis and tendinopathy syndromes are related to overuse injury.

Table 1. Tendinitis and Tendinopathy Syndromes

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Location</th>
<th>Symptoms</th>
<th>Conservative Therapy</th>
<th>Other Therapies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lateral epicondylitis (“tennis elbow”)</td>
<td>Lateral elbow (insertion of lateral epicondyle)</td>
<td>Tenderness over lateral epicondyle and
Corticosteroid injections; joint</td>
<td>• Rest</td>
<td></td>
</tr>
</tbody>
</table>
Wrist Tendinopathy
- **Proximal Wrist Extensor Muscle Mass**: Pain with resisted wrist extension with elbow in full extension; pain with passive terminal wrist flexion with elbow in full extension
- **Activity Modification**
- **NSAIDs**
- **Physical Therapy**
- **Orthotic Devices**
- **Débridement** (open or laparoscopic)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Problem Description</th>
<th>Pain Management</th>
<th>Other Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoulder Tendinopathy</td>
<td>Rotator cuff muscle tendons, most commonly supraspinatus</td>
<td>Pain with overhead activity</td>
<td>Rest, Ice, NSAIDs, Physical Therapy, Corticosteroid Injections</td>
</tr>
<tr>
<td>Achilles Tendinopathy</td>
<td>Achilles tendon</td>
<td>Pain or stiffness 2-6 cm above the posterior calcaneus</td>
<td>Avoidance of aggravating activities, Ice when symptomatic, NSAIDs, Heel lift</td>
</tr>
<tr>
<td>Patellar Tendinopathy ("jumper’s knee")</td>
<td>Proximal tendon at lower pole of patella</td>
<td>Pain over anterior knee and patellar tendon; may progress to tendon calcification and/or tear</td>
<td>Ice, Supportive Taping, Patellar Tendon Straps, NSAIDs</td>
</tr>
</tbody>
</table>

Fracture Nonunion and Delayed Union
The definition of a fracture nonunion remains controversial, particularly the duration necessary to define nonunion. One proposed definition is a failure of progression of fracture healing for at least 3 consecutive months (and at least 6 months after the fracture) accompanied by clinical symptoms of delayed/nonunion (pain, difficulty weight bearing). The following criteria to define nonunion were used to inform this review:
- at least 3 months since the date of fracture;
- serial radiographs have confirmed that no progressive signs of healing have occurred;
- the fracture gap is 1 cm or less; and
- the patient can be adequately immobilized and is of an age likely to comply with nonweight-bearing limitation.

The delayed union can be defined as a decelerating healing process, as determined by serial radiographs, together with a lack of clinical and radiologic evidence of union, bony continuity, or bone reaction at the fracture site for no less than 3 months from the index injury or the most recent intervention. (In contrast, nonunion serial radiographs show no evidence of healing.)

Other Musculoskeletal and Neurologic Conditions
Other musculoskeletal conditions include medial tibial stress syndrome, osteonecrosis (avascular necrosis) of the femoral head, coccydynia, and painful stump neuromas. Neurologic conditions include spasticity, which refers to a motor disorder characterized by increased velocity-dependent stretch reflexes. It is a characteristic of upper motor neuron dysfunction, which may be due to a variety of pathologies.

Treatment
Most cases of plantar fasciitis are treated with conservative therapy, including rest or minimization of running and jumping, heel cups, and nonsteroidal-anti-inflammatory drugs. Local steroid injection may also be used. Improvement may take up to 1 year in some cases.

For tendinitis and tendinopathy syndromes, conservative treatment often involves rest, activity modifications, physical therapy, and anti-inflammatory medications (see Table 1).

Extracorporeal Shock Wave Therapy
Also known as orthotripsy, extracorporeal shock wave therapy (ESWT) has been available since the early 1980s for the treatment of renal stones and has been widely investigated for the treatment of biliary stones. ESWT uses externally applied shock waves to create a transient pressure disturbance, which disrupts solid structures, breaking them into smaller fragments, thus allowing spontaneous passage and/or removal of stones. The mechanism by which ESWT might have an effect on musculoskeletal conditions is not well-defined.

Other mechanisms are also thought to be involved in ESWT. Physical stimuli are known to activate endogenous pain control systems, and activation by shock waves may "reset" the endogenous pain receptors. Damage to endothelial tissue from ESWT may result in increased vessel wall permeability, causing increased diffusion of cytokines, which may, in turn, promote healing. Microtrauma induced by ESWT may promote angiogenesis and thus aid healing. Finally, shock waves have been shown to stimulate osteogenesis and promote callous formation in animals, which is the basis for trials of ESWT in delayed union or nonunion of bone fractures.

There are 2 types of ESWT: focused and radial. Focused ESWT sends medium- to high-energy shockwaves of single pressure pulses lasting microseconds, directed on a specific target using ultrasound or radiographic guidance. Radial ESWT (RSW) transmits low- to medium-energy shockwaves radially over a larger surface area. The Food and Drug Administration (FDA) approval was first granted in 2002 for focused ESWT devices and in 2007 for RSW devices.

Summary
Extracorporeal shock wave therapy (ESWT) is a noninvasive method used to treat pain with shock or sound waves directed from outside the body onto the area to be treated, (eg, the heel in the case of plantar fasciitis). Shock waves are generated at high- or low-energy intensity, and treatment protocols can include more than 1 treatment. ESWT has been investigated for use in a variety of musculoskeletal conditions.

For individuals who have plantar fasciitis who receive ESWT, the evidence includes recent systematic reviews, each analyzing 9 RCTs, for a total of 21 randomized controlled trials (RCTs). Relevant outcomes are symptoms, functional outcomes, quality of life, medication use, and treatment-related morbidity. While several of the same trials were included in multiple meta-analyses, pooled results were inconsistent. One 2017 meta-analysis reported that ESWT was beneficial in reducing pain, while another reported nonsignificant findings in pain reduction. The most recent trial (2018) compared ESWT to corticosteroid injections (CSIs) and found that high-energy ESWT is more effective than CSI and low-energy ESWT is not. Reasons for the differing results include lack of uniformity in the definitions of outcomes, and heterogeneity in ESWT protocols (focused vs radial, high-energy vs low-energy, number and duration of shocks per treatment, number of treatments, and different comparators). The evidence is insufficient to determine the effects of the technology on health outcomes.
For individuals who have lateral epicondylitis who receive ESWT, the evidence includes small RCTs. Relevant outcomes are symptoms, functional outcomes, quality of life, medication use, and treatment-related morbidity. Overall, although some RCTs have demonstrated benefits in pain and functional outcomes associated with ESWT, the limited amount of high-quality RCT evidence precludes conclusions about the efficacy of ESWT for lateral epicondylitis. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have shoulder tendinopathy who receive ESWT, the evidence includes 2 network meta-analyses as well as several systematic reviews and meta-analyses of RCTs. Relevant outcomes are symptoms, functional outcomes, quality of life, medication use, and treatment-related morbidity. The network meta-analyses focused on 3 outcomes: pain reduction, functional assessment, and change in calcific deposits. One network meta-analysis separated trials using high-energy focused ESWT (H-FSW), low-energy ESWT, and radial ESWT (RSW). This analysis reported the most effective treatment for pain reduction was ultrasound-guided needling, followed by RSW and H-FSW. The only treatment showing a benefit in functional outcomes was H-FSW. For the largest change in calcific deposits, the most effective treatment was ultrasound-guided needling, followed by RSW, then H-FSW. Many of the RCTs were judged of poor quality. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have Achilles tendinopathy who receive ESWT, the evidence includes systematic reviews of RCTs, an RCT published after the systematic review, and nonrandomized studies. Relevant outcomes are symptoms, functional outcomes, quality of life, medication use, and treatment-related morbidity. In the most recent systematic review, a pooled analysis found that ESWT reduced both short- and long-term pain compared with nonoperative treatments, although reviewers warned that results were inconsistent across the RCTs and that there was heterogeneity across studies (eg, patient populations, treatment protocols). An RCT published after the systematic review compared ESWT with hyaluronan injections and reported improvements in both treatment groups, although the improvements were significantly higher in the injection group. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have patellar tendinopathy who receive ESWT, the evidence includes systematic reviews of small studies, an RCT not included in the systematic reviews, and a nonrandomized study. Relevant outcomes are symptoms, functional outcomes, quality of life, medication use, and treatment-related morbidity. The studies reported inconsistent results. Many had methodologic deficiencies such as small numbers, short follow-up periods, and heterogeneous treatment protocols. Results from a nonrandomized study suggested that the location of the patellar tendinopathy might impact the response to ESWT (patients with retropatella fat extension did not respond to RSW compared with patients with tendon involvement). The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have medial tibial stress syndrome who receive ESWT, the evidence includes a small RCT and a small nonrandomized cohort study. Relevant outcomes are symptoms, functional outcomes, quality of life, medication use, and treatment-related morbidity. The RCT reported no difference in self-reported pain between study groups. The cohort study reported improvements with ESWT, although selection bias impacted the strength of the conclusions. The available evidence is limited and inconsistent; it does not permit conclusions about the benefits of ESWT for medial tibial stress syndrome. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have osteonecrosis of the femoral head who receive ESWT, the evidence includes three systematic reviews of small, mostly nonrandomized studies. Relevant outcomes are symptoms, functional outcomes, quality of life, medication use, and treatment-related morbidity. While many of the studies have suggested that ESWT might be effective in improving motor function and reducing pain, particularly in patients with early-stage osteonecrosis, the studies were judged of low quality based on lack of blinding, lack of comparators, small sample sizes, short follow-up, and variations in treatment protocols. The evidence is insufficient to determine the effects of the technology on health outcomes.
For individuals who have nonunion or delayed union who receive ESWT, the evidence includes a systematic review of an RCT and several case series, as well as 2 RCTs published after the systematic review. Relevant outcomes are symptoms, functional outcomes, quality of life, medication use, and treatment-related morbidity. Reviewers concluded that the evidence was inconsistent and of poor quality. Data pooling was not possible due to the heterogeneity of outcome definitions and treatment protocols. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have spasticity who receive ESWT, the evidence includes RCTs and systematic reviews. Relevant outcomes are symptoms, functional outcomes, quality of life, medication use, and treatment-related morbidity. As a treatment for spasticity, several small studies have demonstrated ESWT provides short-term improvements in Modified Ashworth Scale scores, but direct evidence on the effect of ESWT on more clinically meaningful measures (eg, pain, function) are lacking. Differences in treatment parameters among studies, including energy dosage, method of generating and directing shock waves, and use or absence of anesthesia, limit generalizations about the evidence base. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/2019</td>
<td>BCBSA National medical policy review. Description, summary and references updated. Policy statement(s) unchanged.</td>
</tr>
<tr>
<td>7/2017</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>1/2017</td>
<td>Clarified coding information for the 2017 code changes.</td>
</tr>
<tr>
<td>7/2016</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>5/2015</td>
<td>Clarified coding language.</td>
</tr>
<tr>
<td>5/2014</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>4/2013</td>
<td>New references from BCBSA National medical policy.</td>
</tr>
</tbody>
</table>

Information Pertaining to All Blue Cross Blue Shield Medical Policies
Click on any of the following terms to access the relevant information:

- [Medical Policy Terms of Use](#)
- [Managed Care Guidelines](#)
- [Indemnity/PPO Guidelines](#)
- [Clinical Exception Process](#)
- [Medical Technology Assessment Guidelines](#)

References

