Medical Policy
Myocardial Strain Imaging

Table of Contents
- Policy: Commercial
- Policy: Medicare
- Authorization Information
- Coding Information
- Description
- Policy History
- Information Pertaining to All Policies
- References

Policy Number: 112
BCBSA Reference Number: 2.02.31
NCD/LCD: Local Coverage Determination (LCD): Category III CPT® Codes (L33392)

Related Policies
None

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity

Myocardial strain imaging in individuals who have exposure to medications or radiation that could result in cardiotoxicity is INVESTIGATIONAL.

Myocardial strain imaging is INVESTIGATIONAL in all other situations.

Medicare HMO BlueSM and Medicare PPO BlueSM Members

Medical necessity criteria and coding guidance for Medicare Advantage members living in Massachusetts can be found through the link below.

Local Coverage Determinations (LCDs) for National Government Services, Inc.

Local Coverage Determination (LCD): Category III CPT® Codes (L33392)

Note: To review the specific LCD, please remember to click “accept” on the CMS licensing agreement at the bottom of the CMS webpage.

For medical necessity criteria and coding guidance for Medicare Advantage members living outside of Massachusetts, please see the Centers for Medicare and Medicaid Services website at https://www.cms.gov for information regarding your specific jurisdiction.

Prior Authorization Information
Inpatient
• For services described in this policy, precertification/preauthorization **IS REQUIRED** for all products if the procedure is performed **inpatient**.

Outpatient

• For services described in this policy, see below for products where prior authorization **might be required** if the procedure is performed **outpatient**.

<table>
<thead>
<tr>
<th>Commercial Managed Care (HMO and POS)</th>
<th>Outpatient</th>
</tr>
</thead>
<tbody>
<tr>
<td>This is not a covered service.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commercial PPO and Indemnity</th>
<th>Outpatient</th>
</tr>
</thead>
<tbody>
<tr>
<td>This is not a covered service.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medicare HMO Blue℠</th>
<th>Outpatient</th>
</tr>
</thead>
<tbody>
<tr>
<td>This is not a covered service.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medicare PPO Blue℠</th>
<th>Outpatient</th>
</tr>
</thead>
<tbody>
<tr>
<td>This is not a covered service.</td>
<td></td>
</tr>
</tbody>
</table>

CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following codes are included below for informational purposes only; this is not an all-inclusive list.

The following CPT code is considered investigational for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue:

CPT Codes

<table>
<thead>
<tr>
<th>CPT codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>93356</td>
<td>Myocardial strain imaging using speckle tracking-derived assessment of myocardial mechanics (List separately in addition to codes for echocardiography imaging)</td>
</tr>
</tbody>
</table>

Description

The term strain indicates dimensional or deformational change under force. When used in echocardiography, the term ‘strain’ is used to describe the magnitude of shortening, thickening, and lengthening of the myocardium through the cardiac cycle. The most frequent measure of myocardial strain is the deformation of the left ventricle in the long axis, termed global longitudinal strain. During systole, ventricular myocardial fibers shorten with movement from the base to the apex. Global longitudinal strain is used as a measure of global left ventricle function and provides a quantitative myocardial deformation analysis of each left ventricle segment. Myocardial strain imaging is intended to detect subclinical changes in left ventricle function in patients with a preserved left ventricle ejection fraction, allowing for early detection of systolic dysfunction. Since strain imaging can identify left ventricle dysfunction earlier than standard methods, this raises the possibility of heart failure prophylaxis and primary prevention before the patient develops symptoms and irreversible myocardial dysfunction. Potential applications of speckle-tracking echocardiography are coronary artery disease, ischemic cardiomyopathy, valvular heart disease, dilated cardiomyopathy, hypertrophic cardiomyopathies, stress cardiomyopathy, and chemotherapy-related cardiotoxicity.

Myocardial Strain Imaging

Myocardial strain can be measured by cardiac magnetic resonance imaging (MRI), tissue Doppler imaging or by speckle-tracking echocardiography. Tissue Doppler strain imaging has been in use since the 1990s but has limitations that include angle dependency and significant noise. In 2016, Smiseth et al reported that the most widely used method of measuring myocardial strain at the present time is speckle-tracking echocardiography. In speckle-tracking echocardiography, natural acoustic markers generated by the interaction between the ultrasound beam and myocardial fibers form interference patterns.
(speckles). These markers are stable, and speckle-tracking echocardiography analyzes the spatial dislocation (tracking) of each point (speckle) on routine 2-dimensional sonograms. Echocardiograms are processed using specific acoustic-tracking software on dedicated workstations, with offline semiautomated analysis of myocardial strain. The 2-dimensional displacement is identified by a search with image processing algorithms for similar patterns across 2 frames. When tracked frame-to-frame, the spatiotemporal displacement of the speckles provides information about myocardial deformation across the cardiac cycle. Global longitudinal strain provides a quantitative analysis of each left ventricle segment, which is expressed as a percentage. In addition to global longitudinal strain, speckle-tracking echocardiography allows evaluation of left ventricle rotational and torsional dynamics.

Summary
Myocardial strain refers to the deformation (shortening, lengthening, or thickening) of the myocardium through the cardiac cycle. Myocardial strain can be measured by tissue Doppler imaging or, more recently, speckle-tracking echocardiography. Speckle-tracking echocardiography uses imaging software to assess the movement of specific markers in the myocardium that are detected in standard echocardiograms. It is proposed that a reduction in myocardial strain may indicate sub-clinical impairment of the heart and can be used to inform treatment before development of symptoms and irreversible myocardial dysfunction.

For individuals who have exposure to medications or radiation that could result in cardiotoxicity who receive myocardial strain imaging, the evidence includes a systematic review of observational studies. Relevant outcomes include symptoms, morbid events, quality of life, treatment-related mortality, and treatment-related morbidity. A systematic review of 13 studies with 384 patients treated for cancer suggests that myocardial strain imaging with tissue Doppler imaging or speckle-tracking echocardiography may be able to identify changes in myocardial deformation that precede changes in left ventricle ejection fraction. Although myocardial strain imaging may detect sub-clinical myocardial changes, the value of these changes in predicting clinical outcomes or guiding therapy is uncertain. No studies were identified that compared the diagnostic accuracy of myocardial strain imaging to left ventricle ejection fraction. A study that will compare clinical outcomes when therapy is guided by myocardial strain imaging or left ventricle ejection fraction is in progress and will provide direct evidence on the clinical utility of myocardial strain imaging. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2020</td>
<td>Clarified coding information.</td>
</tr>
</tbody>
</table>

Information Pertaining to All Blue Cross Blue Shield Medical Policies
Click on any of the following terms to access the relevant information:
- Medical Policy Terms of Use
- Managed Care Guidelines
- Indemnity/PPO Guidelines
- Clinical Exception Process
- Medical Technology Assessment Guidelines

References

5. Thavendiranathan, PP, Poulin, FF, Lim, KK, Plana, JJ, Woo, AA, Marwick, TT. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J. Am. Coll. Cardiol., 2014 Apr 8;63(25 Pt A). PMID 24703918

