Medical Policy

Immune Cell Function Assay

Table of Contents
- Policy: Commercial
- Policy: Medicare
- Authorization Information
- Coding Information
- Description
- Policy History
- Information Pertaining to All Policies
- References

Policy Number: 182
BCBSA Reference Number: 2.04.56
NCD/LCD: N/A

Related Policies
None

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Medicare HMO Blue℠ and Medicare PPO Blue℠ Members

Use of the immune cell function assay to monitor and predict immune function after solid organ transplantation is considered INVESTIGATIONAL.

Use of the immune cell function assay to monitor and predict immune function after hematopoietic stem cell transplantation is considered INVESTIGATIONAL.

Use of the immune cell function assay for all other indications is considered INVESTIGATIONAL.

Prior Authorization Information

Inpatient
- For services described in this policy, precertification/preauthorization IS REQUIRED for all products if the procedure is performed inpatient.

Outpatient
- For services described in this policy, see below for products where prior authorization might be required if the procedure is performed outpatient.

<table>
<thead>
<tr>
<th>Product</th>
<th>Outpatient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Managed Care (HMO and POS)</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Commercial PPO and indemnity</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Medicare HMO Blue℠</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Medicare PPO Blue℠</td>
<td>This is not a covered service.</td>
</tr>
</tbody>
</table>
CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following codes are included below for informational purposes only; this is not an all-inclusive list.

The following CPT code is considered investigational for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue:

<table>
<thead>
<tr>
<th>CPT Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>86352</td>
<td>Cellular function assay involving stimulation (e.g., mitogen or antigen) and detection of biomarker (e.g., ATP)</td>
</tr>
</tbody>
</table>

Description

Immunosuppression for Transplant

In current clinical practice, levels of immunosuppression in patients being managed after a solid organ transplant or hematopoietic cell transplantation are determined by testing for clinical toxicity (e.g., leukopenia, renal failure) and by therapeutic drug monitoring when available. However, drug levels are not a surrogate for overall drug distribution or efficacy because pharmacokinetics often differ among individuals due to clinical factors such as underlying diagnosis, age, sex, and race; circulating drug levels may not reflect the drug concentration in relevant tissues; and serum level of an individual immunosuppressant drug may not reflect the cumulative effect of other concomitant immunosuppressants. The main value of therapeutic drug monitoring is the avoidance of toxic. Individual immune profiles, such as an immune cell function assay, could support clinical decision making and help to manage the risk of infection from excessive immunosuppression and the risk of rejection from inadequate immunosuppression.

Treatment

Several commercially available tests of immune cell function have been developed to support clinical decision making.

ImmuKnow measures the concentration of adenosine triphosphate (ATP) in whole blood after a 15- to 18-hour incubation with phytohemagglutinin (a mitogenic stimulant). Cells that respond to stimulation show increased ATP synthesis during incubation. Concurrently, whole blood is incubated in the absence of stimulants for the purpose of assessing basal ATP activity. CD4-positive T lymphocytes are immunoselected from both samples using anti-CD4 monoclonal antibody-coated magnetic particles. After washing the selected CD4-positive cells on a magnet tray, a lysis reagent is added to release intracellular ATP. A luminescence reagent added to the released ATP produces light measured by a luminometer, which is proportional to the concentration of ATP. The characterization of the cellular immune response of a specimen is made by comparing the ATP concentration for that specimen with fixed ATP production ranges.

Pleximmune measures CD154 expression on T-cytotoxic memory cell lymphocytes. CD154 is a marker of inflammatory response. To characterize the risk of rejection, the patient’s inflammatory response to (transplant) donor cells is expressed as a fraction of the patient’s inflammatory response to third-party cells. This fraction or ratio is called the Immunoreactivity Index (IR). If the donor-induced response exceeds the response to third-party cells, the individual is at increased risk for rejection. Cells are cultured and then analyzed with fluorochrome-stained antibodies to identify the cells expressing CD154. For posttransplant blood samples, an IR greater than 1.1 indicates an increased
risk of rejection, and an IR less than 1.1 indicates a decreased risk of rejection. For pretransplant samples, the threshold for IR is 1.23.

Summary
Careful monitoring of lifelong immunosuppression is required to ensure the long-term viability of solid organ allografts without incurring an increased risk of infection. The monitoring of immunosuppression parameters attempts to balance the dual risks of rejection and infection. It is proposed that individual immune profiles, such as an immune cell function assay, will help assess the immune function of the transplant recipient and individualize immunosuppressive therapy.

For individuals who have a solid organ transplant or hematopoietic cell transplant who receive immune cell function assay testing with ImmuKnow, the evidence includes numerous studies on the association between assay test values and subsequent rejection or infection, and a randomized controlled trial in liver transplant patients. The relevant outcomes are overall survival, other test performance measures, and morbid events. The ImmuKnow test has shown variable associations with infection and rejection, depending on the type of transplant and context of the study. Across all the studies among various types of patients, ImmuKnow levels are associated with the risk of rejection when levels are high and risk of infection when levels are low. However, the absolute risk and increments of risk are uncertain because of the heterogeneity of the studies. The predictive characteristics of the test are still uncertain and do not allow a strong chain of evidence for clinical utility. The trial of the ImmuKnow test in liver transplant patients showed improvement in overall survival; however, the trial had several limitations. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have a solid organ transplant or hematopoietic cell transplant who receive immune cell function assay testing with Pleximmune, the evidence includes the U.S. Food and Drug Administration documentation and a report on the test’s development and validation. The relevant outcomes are overall survival, other measures of test performance, and morbid events. Small studies have shown that Pleximmune values correlate with long-term survival. Pleximmune test results correlated with rejection, but conclusions are uncertain because of extremely limited evidence deriving from a small number of patients described briefly in the Food and Drug Administration approval documents and a second study, in which the confidence interval bounds for sensitivity and specificity estimates were wide. No direct studies of clinical utility were identified. An argument for clinical utility using a chain of evidence would rely on both a demonstration of clinical validity and a rationale that specific clinical interventions based the results of the test decrease the risk of a poor health outcome. At present, the clinical interventions that would occur as a result of the test result are uncertain, and so the clinical validity is uncertain. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/2018</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>1/2017</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>2/2016</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>11/2015</td>
<td>Added coding language.</td>
</tr>
<tr>
<td>12/2014</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>2/2014</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>11/2011-4/1012</td>
<td>Medical policy ICD 10 remediation: Formatting, editing and coding updates. No changes to policy statements.</td>
</tr>
<tr>
<td>1/2011</td>
<td>References added.</td>
</tr>
</tbody>
</table>
Information Pertaining to All Blue Cross Blue Shield Medical Policies

Click on any of the following terms to access the relevant information:
- Medical Policy Terms of Use
- Managed Care Guidelines
- Indemnity/PPO Guidelines
- Clinical Exception Process
- Medical Technology Assessment Guidelines

References