Medical Policy
Hematopoietic Cell Transplantation for Autoimmune Diseases

Table of Contents
- Policy: Commercial
- Policy: Medicare
- Authorization Information
- Description
- Policy History
- Information Pertaining to All Policies
- References
- Coding Information

Policy Number: 192
BCBSA Reference Number: 8.01.25
NCD/LCD: NA

Related Policies
Plasma Exchange #466

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity
Medicare HMO BlueSM and Medicare PPO BlueSM Members

Autologous or allogeneic hematopoietic cell transplantation is considered INVESTIGATIONAL as a treatment of autoimmune diseases, including, but not limited to:

- Multiple sclerosis
- Systemic sclerosis/scleroderma
- Systemic lupus erythematosus
- Juvenile idiopathic or rheumatoid arthritis
- Chronic inflammatory demyelinating polyneuropathy
- Type 1 diabetes mellitus.

Prior Authorization Information
Pre-service approval is required for all inpatient services for all products. See below for situations where prior authorization may be required or may not be required for outpatient services.
Yes indicates that prior authorization is required.
No indicates that prior authorization is not required.
N/A indicates that this service is primarily performed in an inpatient setting.

<table>
<thead>
<tr>
<th>Outpatient</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Managed Care (HMO and POS)</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Medicare HMO BlueSM</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Medicare PPO BlueSM</td>
<td>This is not a covered service.</td>
</tr>
</tbody>
</table>
CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

CPT Codes

<table>
<thead>
<tr>
<th>CPT codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>38204</td>
<td>Management of recipient hematopoietic cell donor search and cell acquisition</td>
</tr>
<tr>
<td>38205</td>
<td>Blood-derived hematopoietic progenitor cell harvesting for transplantation, per collection; allogeneic</td>
</tr>
<tr>
<td>38206</td>
<td>Blood-derived hematopoietic progenitor cell harvesting for transplantation, per collection; autologous</td>
</tr>
<tr>
<td>38208</td>
<td>Transplant preparation of hematopoietic progenitor cells; thawing of previously frozen harvest without washing</td>
</tr>
<tr>
<td>38209</td>
<td>Transplant preparation of hematopoietic progenitor cells; thawing of previously frozen harvest, with washing</td>
</tr>
<tr>
<td>38210</td>
<td>Transplant preparation of hematopoietic progenitor cells; specific cell depletion with harvest, T-cell depletion</td>
</tr>
<tr>
<td>38211</td>
<td>Transplant preparation of hematopoietic progenitor cells; tumor-cell depletion</td>
</tr>
<tr>
<td>38212</td>
<td>Transplant preparation of hematopoietic progenitor cells; red blood cell removal</td>
</tr>
<tr>
<td>38213</td>
<td>Transplant preparation of hematopoietic progenitor cells; platelet depletion</td>
</tr>
<tr>
<td>38214</td>
<td>Transplant preparation of hematopoietic progenitor cells; plasma (volume) depletion</td>
</tr>
<tr>
<td>38215</td>
<td>Transplant preparation of hematopoietic progenitor cells; cell concentration in plasma, mononuclear, or buffy coat layer</td>
</tr>
<tr>
<td>38230</td>
<td>Bone marrow harvesting for transplantation; allogeneic</td>
</tr>
<tr>
<td>38232</td>
<td>Bone marrow harvesting for transplantation; autologous</td>
</tr>
<tr>
<td>38241</td>
<td>Bone marrow or blood-derived peripheral stem-cell transplantation; autologous</td>
</tr>
</tbody>
</table>

HCPCS Codes

<table>
<thead>
<tr>
<th>HCPCS codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2140</td>
<td>Cord blood harvesting for transplantation; allogeneic</td>
</tr>
<tr>
<td>S2142</td>
<td>Cord blood derived stem-cell transplantation, allogeneic</td>
</tr>
<tr>
<td>S2150</td>
<td>Bone marrow or blood-derived peripheral stem-cell harvesting and transplantation, allogeneic, including pheresis, high-dose chemotherapy, and the number of days of post-transplant care in the global definition (including drugs; hospitalization; medical surgical, diagnostic and emergency services)</td>
</tr>
</tbody>
</table>

ICD-10 Procedure Codes

<table>
<thead>
<tr>
<th>ICD-10-PCS procedure codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>30233G0</td>
<td>Transfusion of Autologous Bone Marrow into Peripheral Vein, Percutaneous Approach</td>
</tr>
<tr>
<td>30233G1</td>
<td>Transfusion of Nonautologous Bone Marrow into Peripheral Vein, Percutaneous Approach</td>
</tr>
<tr>
<td>30233X0</td>
<td>Transfusion of Autologous Cord Blood Stem Cells into Peripheral Vein, Percutaneous Approach</td>
</tr>
<tr>
<td>30233X1</td>
<td>Transfusion of Nonautologous Cord Blood Stem Cells into Peripheral Vein, Percutaneous Approach</td>
</tr>
</tbody>
</table>
Description
AUTOIMMUNE DISEASES
Autoimmune diseases represent a heterogeneous group of immune-mediated disorders, including multiple sclerosis, systemic sclerosis/scleroderma, systemic lupus erythematosus, rheumatoid arthritis, and chronic immune demyelinating polyneuropathy. The National Institutes of Health estimates that 5% to 8% of Americans have an autoimmune disorder.

The pathogenesis of autoimmune diseases is not well understood, but it appears to involve underlying genetic susceptibility and environmental factors that lead to loss of self-tolerance, culminating in tissue damage by the patient's own immune system (T cells).

Treatment
Immune suppression is a common treatment strategy for many of these diseases, particularly the rheumatic diseases (eg, rheumatoid arthritis, systemic lupus erythematosus, scleroderma). Most patients with autoimmune disorders respond to conventional therapies, which consist of anti-inflammatory agents, immunosuppressants, and immunomodulating drugs; however, conventional drug therapies are not curative, and a proportion of patients suffer from autoimmune diseases that range from severe to recalcitrant to rapidly progressive. It is for this group of patients with severe autoimmune disease that alternative therapies have been sought, including hematopoietic cell transplantation (HCT). The primary concept underlying use of HCT for these diseases is that ablating and “resetting” the immune system can alter the disease process, by inducing a sustained remission that possibly leads to cure. ¹
Hematopoietic Cell Transplantation

HCT is a procedure in which hematopoietic stem cells are infused to restore bone marrow function in cancer patients who receive bone-marrow-toxic doses of drugs with or without whole body radiotherapy. Hematopoietic stem cells may be obtained from the transplant recipient (autologous HCT) or a donor (allogeneic HCT). They can be harvested from bone marrow, peripheral blood, or umbilical cord blood shortly after delivery of neonates. Although cord blood is an allogeneic source, the stem cells in it are antigenically “naive” and thus are associated with a lower incidence of rejection or graft-versus-host disease. Cord blood is discussed in policy #285 Placental or Umbilical Cord Blood as a Source of Stem Cells prn.pdf.

Immunologic compatibility between infused hematopoietic stem cells and the recipient is not an issue in autologous HCT. However, immunologic compatibility between donor and patient is critical for achieving a good outcome with allogeneic HCT. Compatibility is established by typing of human leukocyte antigens (HLAs) using cellular, serologic, or molecular techniques. HLA refers to the tissue type expressed at the HLA-A, -B, and -DR loci on each arm of chromosome 6. Depending on the disease being treated, an acceptable donor will match the patient at all or most of the HLA loci (with the exception of umbilical cord blood).

Autologous Cell Transplantation

The goal of autologous HCT in patients with autoimmune diseases is to eliminate self-reactive lymphocytes (lymphoablation) and generate new self-tolerant lymphocytes. This approach is in contrast to destroying the entire hematopoietic bone marrow (myeloablation), as is often performed in autologous HCT for hematologic malignancies. However, no standard conditioning regimen exists for autoimmune diseases, and both lymphoablative and myeloablative regimens are used. The efficacy of the different conditioning regimens has not been compared in clinical trials.

Currently, for autoimmune diseases, autologous transplant is preferred over allogeneic, in part because of the lower toxicity of autotransplant relative to allogeneic, the graft-versus-host disease associated with allogeneic transplant, and the need to administer posttransplant immunosuppression after an allogeneic transplant.

Allogeneic Cell Transplantation

The experience of using allogeneic HCT for autoimmune diseases is currently limited but has 2 potential advantages over autologous transplant. First, the use of donor cells from a genetically different individual could possibly eliminate genetic susceptibility to the autoimmune disease and potentially result in a cure. Second, there exists a possible graft-versus-autoimmune effect, in which the donor T cells attack the transplant recipient’s autoreactive immune cells.

Summary

Most patients with autoimmune disorders respond to conventional drug therapies; however, conventional drug therapies are not curative—and a proportion of patients suffer from autoimmune diseases that range from the severe to the recalcitrant to the rapidly progressive. It is in this group of patients with severe autoimmune disease that alternative therapies have been sought, including hematopoietic cell transplantation (HCT).

For individuals with multiple sclerosis who receive HCT, the evidence includes a randomized controlled trial (RCT) and several case series. Relevant outcomes are overall survival, health status measures, quality of life, and treatment-related mortality and morbidity. The phase 2 RCT compared HCT with mitoxantrone, and the trial reported intermediate outcomes (number of new T2 magnetic resonance imaging lesions); the group randomized to HCT developed significantly fewer lesions than the group receiving conventional therapy. The findings of the case series revealed improvements in clinical parameters following HCT compared with baseline. Adverse event rates were high, and most studies reported treatment-related deaths. Controlled trials (with appropriate comparator therapies) that report on clinical outcomes are needed to demonstrate efficacy. The evidence is insufficient to determine the effects of the technology on health outcomes.
For individuals with systemic sclerosis/scleroderma who receive HCT, the evidence includes RCTs and observational studies. Relevant outcomes are overall survival, symptoms, health status measures, quality of life, and treatment-related mortality and morbidity. The results of the ASTIS trial (N=156) have suggested high-dose chemotherapy plus autologous HCT might improve survival among patients with diffuse cutaneous systemic sclerosis compared with pulsed intravenous cyclophosphamide. However, analysis of the internal validity of the trial using U.S. Preventive Services Task Force criteria showed fatal flaws and a poor study rating due to attrition in the control group that could have skewed the survival curve to show better survival for HCT recipients than for controls. A smaller RCT (N=19) found that the rate of improvement at 12 months was significantly higher in the HCT group than in the conventional therapy group. Data from these trials, however, are inconclusive, and additional studies are needed to confirm safety and efficacy. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with systemic lupus erythematosus who receive HCT, the evidence includes case series. Relevant outcomes are overall survival, symptoms, quality of life, and treatment-related mortality and morbidity. Several case series (total N=91 patients) have been published. The largest series (N=50) reported an overall 5-year survival rate of 84% and the probability of disease-free survival was 50%. Additional data are needed from controlled studies to demonstrate efficacy. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with juvenile idiopathic or rheumatoid arthritis who receive HCT, the evidence includes registry data. Relevant outcomes are symptoms, quality of life, medication use, and treatment-related mortality and morbidity. The registry included 50 patients with juvenile idiopathic or rheumatoid arthritis. The overall drug-free remission rate was approximately 50%. Additional data are needed from controlled studies to demonstrate efficacy. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with chronic inflammatory demyelinating polyneuropathy who receive HCT, the evidence includes case reports. Relevant outcomes are overall survival, symptoms, health status measures, quality of life, and treatment-related mortality and morbidity. Additional data are needed from controlled studies to demonstrate efficacy. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with type 1 diabetes who receive HCT, the evidence includes case series and a metaanalysis of 22 studies. Relevant outcomes are overall survival, symptoms, health status measures, quality of life, and treatment-related mortality and morbidity. While a substantial proportion of patients tended to become insulin-free after HCT, remission rates were still high. The meta-analysis further revealed that HCT is more effective in patients with type 1 diabetes and when HCT is administered soon after the diagnosis. Certain factors limit the conclusions that can be drawn about the overall effectiveness of HCT in treating diabetes; those factors are: heterogeneity in the stem cell types, cell number infused, and infusion methods. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with other autoimmune diseases (eg, Crohn disease, immune cytopenias, relapsing polychondritis) who receive HCT, the evidence includes small retrospective studies. Relevant outcomes are overall survival, symptoms, health status measures, quality of life, and treatment-related mortality and morbidity. Additional data are needed from controlled studies to demonstrate efficacy. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/2018</td>
<td>Clarified coding information.</td>
</tr>
<tr>
<td>9/2017</td>
<td>BCBSA National medical policy review. “Stem” removed from title and Policy. Policy statement unchanged. 9/1/2017</td>
</tr>
<tr>
<td>10/2016</td>
<td>Clarified coding information.</td>
</tr>
</tbody>
</table>
Information Pertaining to All Blue Cross Blue Shield Medical Policies

Click on any of the following terms to access the relevant information:
- [Medical Policy Terms of Use](#)
- [Managed Care Guidelines](#)
- [Indemnity/PPO Guidelines](#)
- [Clinical Exception Process](#)
- [Medical Technology Assessment Guidelines](#)

References

