Medical Policy

Extracorporeal Photopheresis

Table of Contents
- Policy: Commercial
- Policy: Medicare
- Authorization Information
- Coding Information
- Description
- Policy History
- Information Pertaining to All Policies
- References

Policy Number: 248
BCBSA Reference Number: 8.01.36
NCD/LCD: National Coverage Determination (NCD) for Extracorporeal Photopheresis (110.4)

Related Policies
None

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity

Extracorporeal photopheresis may be considered MEDICALLY NECESSARY to treat the following conditions:
- Cardiac allograft rejection, including acute rejection, that is either recurrent or that is refractory to standard immunosuppressive drug treatment
- Acute graft-versus-host disease or chronic graft-versus-host disease that is refractory to medical therapy
- Late-stage (III/IV) cutaneous T-cell lymphoma, or
- Early stage (I/II) cutaneous T-cell lymphoma that is progressive and refractory to established non-systemic therapies.

Refractory rejection is defined as rejection that fails to respond adequately to a standard regimen of immunosuppressive therapy.

Extracorporeal photopheresis is considered INVESTIGATIONAL for the following conditions:
- Treatment or prevention of rejection in solid-organ transplantation except for rejection that is recurrent or refractory to standard immunosuppressive drug treatment
- Acute graft-versus-host disease or chronic graft-versus-host disease, that is either previously untreated or is responding to established therapies
- Cutaneous or visceral manifestations of autoimmune diseases, including but not limited to scleroderma, systemic lupus erythematosus, rheumatoid arthritis, pemphigus, psoriasis, multiple sclerosis, diabetes, or autoimmune bullous disorders, severe atopic dermatitis, or Crohn disease.
- Early stage (I/II) cutaneous T-cell lymphoma that is either previously untreated or is responding to established nonsystemic therapies.
 Extracorporeal photopheresis is **INVESTIGATIONAL** for all other indications.

Medicare HMO Blue℠ and Medicare PPO Blue℠ Members

Medical necessity criteria and coding guidance can be found through the link below.

[National Coverage Determination (NCD) for Extracorporeal Photopheresis (110.4)]

Prior Authorization Information

Inpatient
- For services described in this policy, precertification/preauthorization is **required** for all products if the procedure is performed **inpatient**.

Outpatient
- For services described in this policy, see below for products where prior authorization might be **required** if the procedure is performed **outpatient**.

<table>
<thead>
<tr>
<th>Product</th>
<th>Prior Authorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Managed Care (HMO and POS)</td>
<td>Not required.</td>
</tr>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>Not required.</td>
</tr>
<tr>
<td>Medicare HMO Blue℠</td>
<td>Not required.</td>
</tr>
<tr>
<td>Medicare PPO Blue℠</td>
<td>Not required.</td>
</tr>
</tbody>
</table>

CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

CPT Codes

<table>
<thead>
<tr>
<th>CPT codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>36522</td>
<td>Photopheresis, extracorporeal</td>
</tr>
</tbody>
</table>

ICD-10 Diagnosis Codes

<table>
<thead>
<tr>
<th>ICD-10-CM Diagnosis codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C84.00</td>
<td>Mycosis fungoides, unspecified site</td>
</tr>
<tr>
<td>C84.01</td>
<td>Mycosis fungoides, lymph nodes of head, face, and neck</td>
</tr>
<tr>
<td>C84.02</td>
<td>Mycosis fungoides, intrathoracic lymph nodes</td>
</tr>
<tr>
<td>C84.03</td>
<td>Mycosis fungoides, intra-abdominal lymph nodes</td>
</tr>
<tr>
<td>C84.04</td>
<td>Mycosis fungoides, lymph nodes of axilla and upper limb</td>
</tr>
<tr>
<td>C84.05</td>
<td>Mycosis fungoides, lymph nodes of inguinal region and lower limb</td>
</tr>
<tr>
<td>C84.06</td>
<td>Mycosis fungoides, intrapelvic lymph nodes</td>
</tr>
<tr>
<td>C84.07</td>
<td>Mycosis fungoides, spleen</td>
</tr>
<tr>
<td>C84.08</td>
<td>Mycosis fungoides, lymph nodes of multiple sites</td>
</tr>
<tr>
<td>C84.09</td>
<td>Mycosis fungoides, extranodal and solid organ sites</td>
</tr>
<tr>
<td>C84.10</td>
<td>Sézary disease, unspecified site</td>
</tr>
<tr>
<td>C84.11</td>
<td>Sézary disease, lymph nodes of head, face, and neck</td>
</tr>
<tr>
<td>C84.12</td>
<td>Sézary disease, intrathoracic lymph nodes</td>
</tr>
<tr>
<td>C84.13</td>
<td>Sézary disease, intra-abdominal lymph nodes</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>C84.14</td>
<td>Sézary disease, lymph nodes of axilla and upper limb</td>
</tr>
<tr>
<td>C84.15</td>
<td>Sézary disease, lymph nodes of inguinal region and lower limb</td>
</tr>
<tr>
<td>C84.16</td>
<td>Sézary disease, intrapelvic lymph nodes</td>
</tr>
<tr>
<td>C84.17</td>
<td>Sézary disease, spleen</td>
</tr>
<tr>
<td>C84.18</td>
<td>Sézary disease, lymph nodes of multiple sites</td>
</tr>
<tr>
<td>C84.19</td>
<td>Sézary disease, extranodal and solid organ sites</td>
</tr>
<tr>
<td>D89.810</td>
<td>Acute Graft-Versus-Host Disease</td>
</tr>
<tr>
<td>D89.811</td>
<td>Chronic graft-versus-host disease</td>
</tr>
<tr>
<td>D89.812</td>
<td>Acute on chronic graft-versus-host disease</td>
</tr>
<tr>
<td>D89.813</td>
<td>Graft-versus-host disease, unspecified</td>
</tr>
<tr>
<td>T86.00</td>
<td>Unspecified complication of bone marrow transplant</td>
</tr>
<tr>
<td>T86.01</td>
<td>Bone marrow transplant rejection</td>
</tr>
<tr>
<td>T86.02</td>
<td>Bone marrow transplant failure</td>
</tr>
<tr>
<td>T86.03</td>
<td>Bone marrow transplant infection</td>
</tr>
<tr>
<td>T86.09</td>
<td>Other complications of bone marrow transplant</td>
</tr>
<tr>
<td>T86.21</td>
<td>Heart transplant rejection</td>
</tr>
<tr>
<td>T86.31</td>
<td>Heart-lung transplant rejection</td>
</tr>
<tr>
<td>T86.05</td>
<td>Complications of stem cell transplant</td>
</tr>
</tbody>
</table>

DESCRIPTION

Organ Rejection Treatment After Solid Organ Transplant

The standard treatment for organ transplant rejection is immunosuppression, with the particular regimen dictated by the organ being transplanted. As organ transplantation success rates have improved, more patients are facing the morbidity and mortality associated with immunosuppressive therapies developed to prevent rejection of the transplanted organ. Immunosuppressive therapies are used to lower the responsiveness of the recipient’s immune system, decreasing the chance of rejection. Unfortunately, portions of the immune system responsible for the prevention of viral, fungal, and bacterial infections also are affected. This can, in turn, lead to serious infections, including opportunistic infections.

Although first approved for the treatment of cutaneous T-cell lymphoma (CTCL), extracorporeal photopheresis (ECP) has more recently been used as a supplement to conventional therapies in the area of solid organ transplantation. Reports of the successful use of ECP in human cardiac transplant recipients were published in 1992 and use in other transplant patients followed. Although the specific mechanism of action of ECP is unknown, the reinfusion of treated leukocytes seems specifically to suppress the patient’s immune response to the donor organ, although maintaining the body’s ability to respond to other antigens. The specificity of ECP to target the immune response to the transplanted organ allows ECP to decrease organ rejection without an increased risk of infection, common with immunosuppressive drugs.

Graft-Versus-Host Disease

Given that GVHD is an immune-mediated disease, ECP can be used to treat GVHD after a prior allogeneic cell transplant. In fact, GVHD can be categorized in 2 ways: (1) as an acute disease, occurring within the first 100 days after the infusion of allogeneic cells; or (2), as a chronic disease, which develops sometime after 100 days. Acute GVHD is commonly graded from I to IV, ranging from mild disease, which is characterized by a skin rash without the involvement of the liver or gut, to grades III and IV, which are characterized by generalized erythroderma, elevated bilirubin levels, or diarrhea. Grade III acute GVHD is considered severe, and grade IV is considered life-threatening. Chronic GVHD typically presents with more diverse symptomatology resembling autoimmune diseases such as progressive systemic sclerosis, systemic lupus erythematosus, or rheumatoid arthritis. Chronic GVHD may affect the mouth, eyes, respiratory tract, musculoskeletal system, and peripheral nerves, as well as the skin, liver, or gut—the usual sites of acute GVHD.
Autoimmune Disease

The use of ECP as a treatment of autoimmune disease is based on the premise that pathogenic lymphocytes form an expanded clone of cells, which are damaged when exposed to ultraviolet light in the presence of agent 8-methoxypsoralen. It is hypothesized that the resulting damage induces a population of circulating suppressor T cells targeted against the light-damaged cells. It is further hypothesized that these suppressor T cells are targeted at a component of the cell that is common to the entire clone of abnormal cells (ie, not just the light-sensitized cells), thus inducing a systemic effect. However, although scleroderma and other autoimmune diseases are associated with the presence of circulating autoantibodies, it is unknown how these antibodies are related to the pathogenesis of the disease. As discussed in this evidence review, photopheresis is not associated with consistent changes in autoantibody levels.

T-Cell Lymphoma

Cutaneous T-Cell Lymphoma

According to the National Cancer Institute, CTCL is a neoplasia of malignant T lymphocytes that initially presents as skin involvement. CTCL is extremely rare, with an estimated incidence of approximately 0.4 per 100000 annually, but because most are low-grade malignancies with long survival, the overall prevalence is much higher. Two CTCL variants, mycosis fungoides, and the Sézary syndrome account for approximately 60% and 5% of new cases of CTCL, respectively.

CTCL is included in the Revised European-American Lymphoma classification as a group of low-grade T-cell lymphomas, which should be distinguished from other T-cell lymphomas that involve the skin, such as anaplastic large cell lymphoma, peripheral T-cell lymphoma, adult T-cell leukemia/lymphoma (usually with systemic involvement), or subcutaneous panniculitis T-cell lymphoma. In addition, a number of benign or very indolent conditions can be confused with mycosis fungoides, further complicating diagnosis.

Mycosis fungoides typically progresses from an eczematous patch/plaque stage, covering less than 10% of the body surface (T1), to a plaque stage, covering 10% or more of the body surface (T2), and finally to tumors (T3) that frequently undergo necrotic ulceration. Sézary syndrome is an advanced form of mycosis fungoides with generalized erythroderma (T4) and peripheral blood involvement (B1) at presentation. The cytologic transformation from a low-grade lymphoma to a high-grade lymphoma sometimes occurs during the course of these diseases and is associated with poor prognosis. A common cause of death during the tumor phase is sepsis from *Pseudomonas aeruginosa* or *Staphylococcus aureus* caused by chronic skin infection with staphylococcus species and subsequent systemic infections.

The natural history of mycosis fungoides is typically indolent. Symptoms may present for long periods of time (mean, 2-10 years) as waxing and waning cutaneous eruptions. The prognosis of patients with mycosis fungoides or Sézary syndrome is based on the extent of disease at presentation and its stage. Lymphadenopathy and involvement of peripheral blood and viscera increase in likelihood with worsening cutaneous involvement and define poor prognostic groups. Median survival after diagnosis varies by stage. Median survival in patients with stage IA disease exceeds 20 years, with most deaths in this group typically unrelated to mycosis fungoides. In contrast, median survival in patients with stage III or IV disease is less than 5 years; more than 50% of these patients die of their disease.

Appropriate therapy of CTCL depends on a variety of factors, including stage, the patient's overall health, and the presence of symptoms. In general, therapies can be categorized into topical and systemic treatments that include ECP. In contrast to more conventional lymphomas, CTCL is usually not curable (unless caught in its earliest stages). Thus, systemic cytotoxic chemotherapy is avoided except for advanced-stage cases. Partial or complete remission is achievable, although most patients require lifelong treatment and monitoring.

Summary

Extracorporeal photopheresis (ECP) is a leukapheresis-based immunomodulatory procedure that involves the following 3 steps: (1) the patient’s blood is collected into a centrifuge system that separates
the leukocyte-rich portion (buffy coat) from the rest of the blood; (2) the photosensitizer agent 8-
methoxypsoralen is added to the lymphocyte fraction, which is then exposed to ultraviolet-A (320-400 nm
wavelength) light at a dose of 1 to 2 J/cm²; and (3) the light-sensitized lymphocytes are reinfused into the
patient. The use of ECP has been investigated for patients needing treatment for organ rejection after
solid organ, transplant graft-versus-host disease (GVHD), autoimmune diseases, and T-cell lymphoma.

Graft Rejection After Solid Organ Transplant

Heart Transplant

For individuals who are heart transplant recipients who experience acute graft rejection refractory to
immunosuppression who receive ECP, the evidence includes a small randomized controlled trial
(RCT). The relevant outcomes are overall survival (OS), change in disease status, and treatment-related
mortality and morbidity. The small RCT, while suggesting similar outcomes for ECP and corticosteroids,
is insufficient to permit conclusions on the utility of ECP. Studies with more patients and longer follow-up
are needed. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who are heart transplant recipients who experience recurrent and/or refractory graft
rejection who receive ECP, the evidence includes a comparative study and small case
series. The relevant outcomes are OS, change in disease status, and treatment-related mortality and
morbidity. Current evidence is consistent on the beneficial effect of ECP for cardiac transplant patients
with graft rejection refractory to standard therapy. The evidence is sufficient to determine that the
technology results in a meaningful improvement in the net health outcome.

For individuals who are heart transplant recipients who require prophylaxis to prevent graft rejection who
receive ECP, the evidence includes a small RCT. The relevant outcomes are OS, change in disease
status, and treatment-related mortality and morbidity. The small randomized trial is insufficient to permit
conclusions on the utility of ECP. Studies with more patients and longer follow-up are needed. The
evidence is insufficient to determine the effects of the technology on health outcomes.

Lung Transplant

For individuals who are lung transplant recipients who experience acute graft rejection who receive ECP,
the evidence includes a small retrospective study and small case series. The relevant outcomes are OS, change in
disease status, and treatment-related mortality and morbidity. Current evidence is very
limited, and any conclusions drawn lack certainty. A prospective, randomized trial is needed
specifically evaluating the treatment of patients with acute graft rejection. The evidence is insufficient to
determine the effects of the technology on health outcomes.

For individuals who are lung transplant recipients with bronchiolitis obliterans syndrome refractory to
corticosteroids who receive ECP, the evidence includes a prospective study and numerous retrospective
analyses. The relevant outcomes are OS, change in disease status, and treatment-related mortality and
morbidity. Studies have shown inconsistent results across bronchiolitis obliterans syndrome grades.
Prospective, RCTs are necessary with analyses stratified by syndrome grade. The evidence is insufficient
to determine the effects of the technology on health outcomes.

Liver Transplant

For individuals who are liver transplant recipients who experience graft rejection and receive ECP, the
evidence includes a small nonrandomized study, a retrospective study, and a case series.
The relevant outcomes are OS, change in disease status, and treatment-related mortality and morbidity.
Current evidence does not permit conclusions on the utility of ECP in this population. There is a need for
RCTs comparing immunosuppressive therapy alone with immunosuppressive therapy with ECP.
The evidence is insufficient to determine the effects of the technology on health outcomes.

Kidney Transplant

For individuals who are kidney transplant recipients who experience recurrent graft rejection who receive
ECP, the evidence includes a small prospective study and numerous case reports. The
relevant outcomes are OS, change in disease status, and treatment-related mortality and morbidity.
Current evidence does not permit conclusions on the effect of ECP on net health outcome. RCTs, comparing immunosuppressive therapy with immunosuppressive therapy using ECP and examining histologic confirmation of treatment response, are needed. The evidence is insufficient to determine the effects of the technology on health outcomes.

Graft-Versus-Host Disease

For individuals who have acute or chronic GVHD refractory to medical treatment who receive ECP, the evidence includes systematic reviews, retrospective studies, and case series. The relevant outcomes are OS, change in disease status, and treatment-related mortality and morbidity. Current evidence has consistently shown that ECP reduces the incidence of GVHD that is unresponsive to standard therapy. Additionally, there is a lack of other treatment options for these patients; adverse events related to ECP are minimal; and, if there is a response to ECP, patients may be able to reduce or discontinue treatment with corticosteroids and other immunosuppressive agents. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Clinical input obtained in 2014 supported the use of ECP in patients with refractory acute GVHD.

Autoimmune Disease

For individuals who have autoimmune diseases (eg, cutaneous or visceral manifestations of autoimmune diseases including but not limited to scleroderma, systemic lupus erythematosus, rheumatoid arthritis, pemphigus, psoriasis, multiple sclerosis, diabetes, autoimmune bullous disorders, severe atopic dermatitis, and Crohn disease) who receive ECP, the evidence includes isolated RCTs, small prospective and retrospective studies, and case reports. The relevant outcomes are OS, change in disease status, and treatment-related mortality and morbidity. The current literature assessing the various autoimmune diseases is not sufficiently robust to support conclusions. The evidence is insufficient to determine the effects of the technology on health outcomes.

Cutaneous T-Cell Lymphoma

For individuals who have advanced-stage (stage III or IV) CTCL who receive ECP, the evidence includes a systematic review and numerous small case series. The relevant outcomes are OS, change in disease status, and treatment-related mortality and morbidity. Evidence from these small case series has shown a favorable response to ECP treatment and an increase in survival in a proportion of these patients. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have refractory or progressive early-stage (stage I or II) CTCL who receive ECP, the evidence includes a systematic review. The relevant outcomes are OS, change in disease status, and treatment-related mortality and morbidity. Given the unfavorable prognosis for patients with early-stage CTCL that progresses on nonsystemic therapies, the relative lack of adverse events with ECP compared with other systemic treatments, and the good response rates often observed with ECP, this therapy is an option for those with refractory or progressive early-stage CTCL. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/2015</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>5/2014</td>
<td>Updated Coding section with ICD10 procedure and diagnosis codes. Effective 10/2015.</td>
</tr>
<tr>
<td>Date</td>
<td>Event Description</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>2/2013</td>
<td>BCBSA National medical policy review. No change in medical policy statement. Investigational statement clarified to apply to acute cardiac transplant rejection that is not recurrent or refractory. Effective 2/4/2013.</td>
</tr>
<tr>
<td>5/2009</td>
<td>BCBS Association National Policy Review No changes to commercial policy statements. Coverage for Medicare HMO Blue, Medicare PPO Blue for therapeutic pheresis clarified based on CMS' NCD.</td>
</tr>
<tr>
<td>2/2008</td>
<td>BCBS Association National Policy Review No changes to policy statements.</td>
</tr>
</tbody>
</table>

Information Pertaining to All Blue Cross Blue Shield Medical Policies

Click on any of the following terms to access the relevant information:

- Medical Policy Terms of Use
- Managed Care Guidelines
- Indemnity/PPO Guidelines
- Clinical Exception Process
- Medical Technology Assessment Guidelines

References

