Medical Policy

Orthopedic Applications of Stem Cell Therapy (Including Allograft and Bone Substitute Products Used With Autologous Bone Marrow)

Table of Contents
• Policy: Commercial
• Policy: Medicare
• Authorization Information
• Coding Information
• Description
• Policy History
• Information Pertaining to All Policies
• References

Policy Number: 254
BCBSA Reference Number: 8.01.52
NCD/LCD: NA

Related Policies
• Autologous Chondrocyte Implantation for Focal Articular Cartilage Lesions, #374
• Orthopedic Applications of Platelet-Rich Plasma, #737
• Prolotherapy, #183

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Medicare HMO BlueSM and Medicare PPO BlueSM Members

Mesenchymal stem cell therapy is considered INVESTIGATIONAL for all orthopedic applications, including use in repair or regeneration of musculoskeletal tissue.

Allograft bone products containing viable stem cells, including but not limited to demineralized bone matrix (DBM) with stem cells, are considered INVESTIGATIONAL for all orthopedic applications.

Allograft or synthetic bone graft substitutes that must be combined with autologous blood or bone marrow are considered INVESTIGATIONAL for all orthopedic applications.

Prior Authorization Information

Inpatient
• For services described in this policy, precertification/preauthorization IS REQUIRED for all products if the procedure is performed inpatient.

Outpatient
• For services described in this policy, see below for products where prior authorization might be required if the procedure is performed outpatient.

<table>
<thead>
<tr>
<th>Commercial Managed Care (HMO and POS)</th>
<th>Outpatient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This is not a covered service.</td>
</tr>
</tbody>
</table>

Commercial PPO and Indemnity

<table>
<thead>
<tr>
<th>Coverage Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicare HMO Blue™</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Medicare PPO Blue™</td>
<td>This is not a covered service.</td>
</tr>
</tbody>
</table>

CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following codes are included below for informational purposes only; this is not an all-inclusive list.

According to the policy statement above, the following CPT codes are considered investigational for the conditions listed for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue:

CPT Codes

<table>
<thead>
<tr>
<th>CPT codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>38205</td>
<td>Blood-derived hematopoietic progenitor cell harvesting for transplantation, per collection; allogeneic</td>
</tr>
<tr>
<td>38206</td>
<td>Blood-derived hematopoietic progenitor cell harvesting for transplantation, per collection; autologous</td>
</tr>
<tr>
<td>38230</td>
<td>Bone marrow harvesting for transplantation; allogeneic</td>
</tr>
<tr>
<td>38232</td>
<td>Bone marrow harvesting for transplantation; autologous</td>
</tr>
<tr>
<td>38240</td>
<td>Bone marrow or blood-derived peripheral stem cell transplantation; allogeneic</td>
</tr>
<tr>
<td>38241</td>
<td>Bone marrow or blood-derived peripheral stem cell transplantation; autologous</td>
</tr>
</tbody>
</table>

Description

Mesenchymal Stem Cells

MSCs are multipotent cells (also called multipotent stromal cells) that can differentiate into various tissues including organs, trabecular bone, tendon, articular cartilage, ligaments, muscle, and fat. MSCs are associated with the blood vessels within the bone marrow, synovium, fat, and muscle, where they can be mobilized for endogenous repair as occurs with the healing of bone fractures. Tissues, such as muscle, cartilage, tendon, ligaments, and vertebral discs, show limited capacity for endogenous repair because of the limited presence of the triad of functional tissue components: vasculature, nerves, and lymphatics. Orthobiologics is a term introduced to describe interventions using cells and biomaterials to support healing and repair. Cell therapy is the application of MSCs directly to a musculoskeletal site. Tissue engineering techniques use MSCs and/or bioactive molecules such as growth factors and scaffold combinations to improve the efficiency of repair or regeneration of damaged musculoskeletal tissues.¹

Bone marrow aspirate is considered the most accessible source and, thus, the most common place to isolate MSCs for the treatment of musculoskeletal disease. However, harvesting MSCs from bone marrow requires a procedure that may result in donor-site morbidity. Also, the number of MSCs in bone marrow is low, and the number and differentiation capacity of bone marrow-derived MSCs decreases with age, limiting their efficiency when isolated from older patients.

In vivo, the fate of stem cells is regulated by signals in the local 3-dimensional microenvironment from the extracellular matrix and neighboring cells. It is believed the success of tissue engineering with MSCs will also require an appropriate 3-dimensional scaffold or matrix, culture conditions for tissue-specific induction, and implantation techniques that provide appropriate biomechanical forces and mechanical...
stimulation. The ability to induce cell division and differentiation without adverse effects, such as the formation of neoplasms, remains a significant concern. Given that each tissue type requires different culture conditions, induction factors (signaling proteins, cytokines, growth factors), and implantation techniques, each preparation must be individually examined.

Summary
Mesenchymal stem cells (MSCs) have the capability to differentiate into a variety of tissue types, including various musculoskeletal tissues. Potential uses of MSCs for orthopedic applications include treatment of damaged bone, cartilage, ligaments, tendons, and intervertebral discs.

For individuals who have cartilage defects, meniscal defects, joint fusion procedures, or osteonecrosis who receive stem cell therapy, the evidence includes small randomized controlled trials and nonrandomized comparative trials. The relevant outcomes are symptoms, morbid events, functional outcomes, quality of life, and treatment-related morbidity. Use of MSCs for orthopedic conditions is an active area of research. Despite continued research into the methods of harvesting and delivering treatment, there are uncertainties regarding the optimal source of cells and the delivery method. Studies have included MSCs from bone marrow, adipose tissue, peripheral blood, and synovial tissue. The largest body of evidence has evaluated the use of autologous MSCs, either concentrated or expanded in culture, for cartilage repair. This evidence includes small randomized and nonrandomized comparative trials with insufficient data to evaluate health outcomes. Also, expanded MSCs for orthopedic applications are not U.S. Food and Drug Administration‒approved (concentrated autologous MSCs do not require agency approval). Overall, there is a lack of evidence that clinical outcomes are improved. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/2018</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>8/2017</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>7/2014</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>12/2012</td>
<td>Updated to add new CPT code 38243.</td>
</tr>
<tr>
<td>12/01/2010</td>
<td>New policy, effective 12/01/2010.</td>
</tr>
</tbody>
</table>

Information Pertaining to All Blue Cross Blue Shield Medical Policies
Click on any of the following terms to access the relevant information:

- Medical Policy Terms of Use
- Managed Care Guidelines
- Indemnity/PPO Guidelines
- Clinical Exception Process
- Medical Technology Assessment Guidelines

References
2. U.S. Food and Drug Administration. Letter from Mary A. Malarkey, Director, Office of Compliance and Biologics Quality, Center for Biologics Evaluation and Research to Christopher J. Centeno, M.D., Medical Director, Regenerative Sciences, Inc. 2008 Jul 25; https://wayback.archive-

