Medical Policy
Cardiac Hemodynamic Monitoring for the Management of Heart Failure in the Outpatient Setting

Table of Contents
• Policy: Commercial
• Policy: Medicare
• Authorization Information
• Coding Information
• Description
• Policy History
• Information Pertaining to All Policies
• References

Policy Number: 287
BCBSA Reference Number: 2.02.24
NCD/LCD: National Coverage Determination (NCD) for Cardiac Output Monitoring by Thoracic Electrical Bioimpedance (TEB) (20.16)

Related Policies
• Biventricular Pacemakers (Cardiac Resynchronization Therapy) for the Treatment of Heart Failure, #101

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity

In the ambulatory care and outpatient setting, cardiac hemodynamic monitoring for the management of heart failure using implantable direct pressure monitoring of the pulmonary artery, thoracic bioimpedance, inert gas rebreathing, and arterial pressure during the Valsalva maneuver, is considered INVESTIGATIONAL.

This policy only addresses use of these techniques in ambulatory care and outpatient settings.

Medicare HMO BlueSM and Medicare PPO BlueSM Members

Medical necessity criteria and coding guidance can be found through the link(s) below.

National Coverage Determinations (NCDs)

National Coverage Determination (NCD) for Cardiac Output Monitoring by Thoracic Electrical Bioimpedance (TEB) (20.16)

Note: To review the specific NCD, please remember to click “accept” on the CMS licensing agreement at the bottom of the CMS webpage.
Prior Authorization Information

Inpatient

- For services described in this policy, precertification/preauthorization is required for all products if the procedure is performed inpatient.

Outpatient

- For services described in this policy, see below for products where prior authorization might be required if the procedure is performed outpatient.

<table>
<thead>
<tr>
<th>Product Type</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Managed Care (HMO and POS)</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Medicare HMO BlueSM</td>
<td>Prior authorization is not required.</td>
</tr>
<tr>
<td>Medicare PPO BlueSM</td>
<td>Prior authorization is not required.</td>
</tr>
</tbody>
</table>

CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member. A draft of future ICD-10 Coding related to this document, as it might look today, is included below for your reference.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following CPT and HCPCS codes are considered investigational for Commercial Members: Managed Care (HMO and POS), PPO and Indemnity:

CPT Codes

<table>
<thead>
<tr>
<th>CPT codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>33289</td>
<td>Transcatheter implantation of wireless pulmonary artery pressure sensor for long-term hemodynamic monitoring, including deployment and calibration of the sensor, right heart catheterization, selective pulmonary catheterization, radiological supervision and interpretation, and pulmonary artery angiography, when performed</td>
</tr>
<tr>
<td>93264</td>
<td>Remote monitoring of a wireless pulmonary artery pressure sensor for up to 30 days, including at least weekly downloads of pulmonary artery pressure recordings, interpretation(s), trend analysis, and report(s) by a physician or other qualified health care professional</td>
</tr>
<tr>
<td>93701</td>
<td>Bioimpedance-derived physiologic cardiovascular analysis.</td>
</tr>
</tbody>
</table>

HCPCS Codes

<table>
<thead>
<tr>
<th>HCPCS codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2624</td>
<td>Implantable wireless pulmonary artery pressure sensor with delivery catheter, including all system components</td>
</tr>
</tbody>
</table>

Description

Chronic Heart Failure

Patients with chronic heart failure are at risk of developing acute decompensated heart failure, often requiring hospital admission. Patients with a history of acute decompensation have the additional risk of future episodes of decompensation and death. Reasons for the transition from a stable, chronic state to an acute, decompensated state include disease progression, as well as acute events such as coronary
ischemia and dysrhythmias. While precipitating factors are frequently not identified, the most common preventable cause is noncompliance with medication and dietary regimens.\(^1\)

Management

Strategies for reducing decompensation, and thus the need for hospitalization, are aimed at early identification of patients at risk for imminent decompensation. Programs for early identification of heart failure are characterized by frequent contact with patients to review signs and symptoms with a healthcare provider, education, and medication adjustments as appropriate. These encounters may occur face-to-face in the office or at home, or via cellular or computed technology.\(^2\)

Precise measurement of cardiac hemodynamics is often employed in the intensive care setting to carefully manage fluid status in acutely decompensated heart failure. Transthoracic echocardiography, transesophageal echocardiography, and Doppler ultrasound are noninvasive methods for monitoring cardiac output on an intermittent basis for the more stable patient but are not addressed herein. A variety of biomarkers and radiologic techniques may be used for dyspnea when the diagnosis of acute decompensated heart failure is uncertain.

The criterion standard for hemodynamic monitoring is pulmonary artery catheters and central venous pressure catheters. However, they are invasive, inaccurate, and inconsistent in predicting fluid responsiveness. Several studies have demonstrated that catheters fail to improve outcomes in critically ill patients and may be associated with harm. To overcome these limitations, multiple techniques and devices have been developed that use complex imaging technology and computer algorithms to estimate fluid responsiveness, volume status, cardiac output and tissue perfusion. Many are intended for use in outpatient settings but can be used in the emergency department, intensive care unit, and operating room. Four methods are reviewed here: implantable pressure monitoring devices, thoracic bioimpedance, inert gas rebreathing, and arterial waveform during the Valsalva maneuver. Use of last three is not widespread because of several limitations including use proprietary technology making it difficult to confirm their validity and lack of large randomized controlled trials to evaluate treatment decisions guided by these hemodynamic monitors.

Summary

A variety of outpatient cardiac hemodynamic monitoring devices are intended to improve quality of life and reduce morbidity for patients with heart failure by decreasing episodes of acute decompensation. Monitors can identify physiologic changes that precede clinical symptoms and thus allow preventive intervention. These devices operate through various mechanisms, including implantable pressure sensors, thoracic bioimpedance measurement, inert gas rebreathing, and estimation of left ventricular end-diastolic pressure by arterial pressure during the Valsalva maneuver.

For individuals who have heart failure in outpatient settings who receive hemodynamic monitoring with an implantable pulmonary artery pressure sensor device, the evidence includes randomized controlled trials. The relevant outcomes are overall survival, symptoms, functional outcomes, quality of life, morbid events, hospitalizations, and treatment-related morbidity. One implantable pressure monitor, the CardioMEMS device, has U.S. Food and Drug Administration approval. The pivotal CardioMEMS Heart Sensor Allows Monitoring of Pressure to Improve Outcomes in NYHA III Heart Failure Patients randomized controlled trial reported a statistically significant decrease in heart failure-related hospitalizations in patients implanted with CardioMEMS device compared with usual care. However, trial results were potentially biased in favor of the treatment group due to use of additional nurse communication to enhance protocol compliance with the device. The manufacturer conducted multiple analyses to address potential bias from the nurse interventions. Results were reviewed favorably by the Food and Drug Administration. While these analyses demonstrated the consistency of benefit from the CardioMEMS device, all such analyses have methodologic limitations. Early safety data have been suggestive of a higher rate of procedural complications, particularly related to pulmonary artery injury. Given that the intervention is invasive and intended to be used for a highly prevalent condition, in the light of limited safety data, lack of demonstrable mortality benefit, and pending questions related to its benefit in reducing hospitalizations, the net benefit remains uncertain. Many of these concerns may be clarified...
by an ongoing postmarketing study that proposes to enroll 1200 patients (at least 35% women) is reported. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have heart failure in outpatient settings who receive hemodynamic monitoring by thoracic impedance, with inert gas rebreathing, or of arterial pressure during the Valsalva maneuver, the evidence includes uncontrolled prospective studies and case series. The relevant outcomes are overall survival, symptoms, functional outcomes, quality of life, morbid events, hospitalizations, and treatment-related morbidity. There is a lack of randomized controlled trial evidence evaluating whether the use of these technologies improves health outcomes over standard active management of heart failure patient. The case series have reported physiologic measurement-related outcomes and/or associations between monitoring information and heart failure exacerbations, but do not provide definitive evidence on device efficacy. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2019</td>
<td>Clarified coding information.</td>
</tr>
<tr>
<td>7/2018</td>
<td>BCBSA National medical policy review. Policy statement clarified. 7/1/2018</td>
</tr>
<tr>
<td>6/2017</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>7/2016</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>8/2015</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>10/2014</td>
<td>Clarified coding information.</td>
</tr>
<tr>
<td>9/2014</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>6/2014</td>
<td>Updated Coding section with ICD10 procedure and diagnosis codes, effective 10/2015.</td>
</tr>
<tr>
<td>10/2013</td>
<td>New references from BCBSA National medical policy.</td>
</tr>
<tr>
<td>5/2013</td>
<td>New references from BCBSA National medical policy.</td>
</tr>
</tbody>
</table>

Information Pertaining to All Blue Cross Blue Shield Medical Policies
Click on any of the following terms to access the relevant information:
- Medical Policy Terms of Use
- Managed Care Guidelines
- Indemnity/PPO Guidelines
- Clinical Exception Process
- Medical Technology Assessment Guidelines

References

