Medical Policy
Transcranial Magnetic Stimulation as a Treatment of Depression and Other Psychiatric/Neurologic Disorders

Table of Contents
• Policy: Commercial
• Policy: Medicare
• Authorization Information
• Coding Information
• Description
• Policy History
• Information Pertaining to All Policies
• References

Policy Number: 297
BCBSA Reference Number: 2.01.50
NCD/LCD: Local Coverage Determination (LCD): Transcranial Magnetic Stimulation (L33398)

Related Policies
• Outpatient Psychotherapy, #423
• Outpatient Electroconvulsive Therapy, #319
• Vagus Nerve Stimulation, #474
• Treatment of Tinnitus, #267
• Deep Brain Stimulation, #473

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity, Medicare HMO BlueSM and Medicare PPO BlueSM Members

Repetitive transcranial magnetic stimulation (rTMS) or deep transcranial magnetic stimulation (dTMS) of the brain may be considered MEDICALLY NECESSARY as a treatment of major depressive disorder when all of the following conditions (1-3) have been met:

1. Confirmed diagnosis of severe major depressive disorder (single or recurrent) documented by standardized rating scales that reliably measure depressive symptoms; and
2. Any one of the following (a, b, c, or d):
 a. Failure of 4 trials of psychopharmacologic agents including 2 different agent classes and 2 augmentation trials; or
 b. Inability to tolerate a therapeutic dose of medications as evidenced by 4 trials of psychopharmacologic agents with distinct side effects; or
 c. History of response to rTMS in a previous depressive episode (at least 3 months since the prior episode); or
 d. Is a candidate for electroconvulsive therapy; further, electroconvulsive therapy would not be clinically superior to rTMS (eg, in cases with psychosis, acute suicidal risk, catatonia or life-threatening inanition rTMS should NOT be used); and
3. Failure of a trial of a psychotherapy known to be effective in the treatment of major depressive disorder of an adequate frequency and duration, without significant improvement in depressive symptoms, as documented by standardized rating scales that reliably measure depressive symptoms.

Repetitive transcranial magnetic stimulation (rTMS) or deep transcranial magnetic stimulation (dTMS) for major depressive disorder that does not meet the criteria listed above is considered Investigational. Continued treatment with repetitive transcranial magnetic stimulation (rTMS) or deep transcranial magnetic stimulation (dTMS) or of the brain as maintenance therapy is considered Investigational.

Repetitive transcranial magnetic stimulation (rTMS) or deep transcranial magnetic stimulation (dTMS) of the brain is considered Investigational as a treatment of all other psychiatric/neurologic disorders, including but not limited to bipolar disorder, schizophrenia, obsessive-compulsive disorder, or migraine headaches.

Repetitive transcranial magnetic stimulation (rTMS) or deep transcranial magnetic stimulation (dTMS) should be performed using a U.S. Food and Drug Administration cleared device in appropriately selected patients, by physicians who are adequately trained and experienced in the specific techniques used. A treatment course should not exceed 5 days a week for 6 weeks (total of 30 sessions), followed by a 3-week taper of 3 TMS treatments in week 1, 2 TMS treatments the next week, and 1 TMS treatment in the last week.

Contraindications to repetitive TMS include:
- Seizure Disorder or any history of seizure with increased risk of future seizure; or
- Presence of acute or chronic psychotic symptoms or disorders (e.g., schizophrenia, schizophreniform or schizoaffective disorder) in the current depressive episode; or
- Neurologic conditions that include epilepsy, cerebrovascular disease, dementia, increased intracranial pressure, having a history of repetitive or severe head trauma, or with primary or secondary tumors in the central nervous system; or
- Presence of an implanted magnetic-sensitive medical device located within 30 centimeters from the TMS magnetic coil or other implanted items including but not limited to a cochlear implant, implanted cardioverter defibrillator, pacemakers, vagus nerve stimulator or metal aneurysm clips or coils, staples, or stents.

Prior Authorization Information

Inpatient
- For services described in this policy, precertification/preauthorization is required for all products if the procedure is performed inpatient.

Outpatient
- For services described in this policy, see below for products where prior authorization might be required if the procedure is performed outpatient.

<table>
<thead>
<tr>
<th>Commercial Managed Care (HMO and POS)</th>
<th>Outpatient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>Prior authorization is required.</td>
</tr>
<tr>
<td>Medicare HMO BlueSM</td>
<td>Prior authorization is not required.</td>
</tr>
<tr>
<td>Medicare PPO BlueSM</td>
<td>Prior authorization is not required.</td>
</tr>
</tbody>
</table>

CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.
Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following codes are included below for informational purposes only; this is not an all-inclusive list.

The above medical necessity criteria MUST be met for the following codes to be covered for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue:

CPT Codes

<table>
<thead>
<tr>
<th>CPT codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>90867</td>
<td>Therapeutic repetitive transcranial magnetic stimulation (TMS) treatment; initial, including cortical mapping, motor threshold determination, delivery and management</td>
</tr>
<tr>
<td>90868</td>
<td>Therapeutic repetitive transcranial magnetic stimulation (TMS) treatment; subsequent delivery and management, per session</td>
</tr>
<tr>
<td>90869</td>
<td>Therapeutic repetitive transcranial magnetic stimulation (TMS) treatment; subsequent motor threshold re-determination with delivery and management</td>
</tr>
</tbody>
</table>

The following ICD Diagnosis Codes are considered medically necessary when submitted with the CPT codes above if medical necessity criteria are met:

ICD-10 Diagnosis Codes

<table>
<thead>
<tr>
<th>ICD-10-CM Diagnosis codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F32.2</td>
<td>Major depressive disorder, single episode, severe without psychotic features</td>
</tr>
<tr>
<td>F33.2</td>
<td>Major depressive disorder, recurrent severe without psychotic features</td>
</tr>
</tbody>
</table>

Description

Transcranial Magnetic Stimulation

Transcranial magnetic stimulation (TMS), introduced in 1985 as a new method of noninvasive stimulation of the brain, involves placement of a small coil over the scalp, passing a rapidly alternating current through the coil wire, which produces a magnetic field that passes unimpeded through the scalp and bone, resulting in electrical stimulation of the cortex. TMS was initially used to investigate nerve conduction; eg, TMS over the motor cortex will produce a contralateral muscular-evoked potential. The motor threshold, which is the minimum intensity of stimulation required to induce a motor response, is empirically determined for each person by localizing the site on the scalp for optimal stimulation of a hand muscle, then gradually increasing the intensity of stimulation. The stimulation site for the treatment of depression is usually 5 cm anterior to the motor stimulation site.

In contrast to electroconvulsive therapy, TMS does not require general anesthesia and does not generally induce a convulsion. Interest in the use of TMS as a treatment for depression was augmented by the development of a device that could deliver rapid, repetitive stimulation. Imaging studies had shown a decrease in the activity of the left dorsolateral prefrontal cortex in depressed patients, and early studies suggested that high-frequency (eg, 5-10 Hz) TMS of the left dorsolateral prefrontal cortex had antidepressant effects. Low-frequency (1-2 Hz) stimulation of the right dorsolateral prefrontal cortex has also been investigated. The rationale for low-frequency TMS is inhibition of right frontal cortical activity to correct the interhemispheric imbalance. A combination approach (bilateral stimulation), or deep stimulation with an H1 coil, is also being explored, as is theta burst stimulation.

Repetitive TMS is also being tested as a treatment for a variety of other disorders. In addition to the potential for altering interhemispheric imbalance, it has been proposed that high-frequency repetitive TMS may facilitate neuroplasticity.
Summary

Transcranial magnetic stimulation (TMS) is a noninvasive method of delivering electrical stimulation to the brain. TMS involves the placement of a small coil over the scalp and passing a rapidly alternating current through the coil wire. The electrical current produces a magnetic field that passes unimpeded through the scalp and bone that stimulate neuronal function. Repetitive TMS (rTMS) is being evaluated for the treatment of treatment-resistant depression (TRD) and other psychiatric and neurologic disorders.

For individuals who have TRD who receive rTMS, the evidence includes a large number of sham-controlled randomized trials and meta-analyses of these trials. The relevant outcomes are symptoms, functional outcomes, and quality of life. The meta-analyses found a clinical benefit associated with rTMS for TRD with improved response rates and rates of remission compared with sham. The most recent meta-analyses have concluded that the effect of rTMS, on average depression scores, is smaller than the effect of electroconvulsive therapy (ECT) on TRD and that the mean improvement in depression scores with rTMS did not reach the minimal clinically important difference; however, clinically meaningful improvements were noted in a subgroup of studies using higher frequency pulses. One potential area of benefit for rTMS is in accelerating or enhancing the response to antidepressant medications, and there is some evidence that rTMS, when given in conjunction with the initiation of pharmacologic therapy, improves the response rate compared with pharmacologic therapy alone. The effect of rTMS appears to be less robust when it is given in combination with a stable dose of antidepressant medication. Meta-analyses have also found that the efficacy of rTMS decreases with longer follow-up, though some studies have reported persistent response up to six months in some patients. There is limited evidence to compare the effects of these treatments on cognition, although the adverse events of rTMS appear to be minimal. While the most recent meta-analyses have reported that the effect of rTMS is smaller than the effect of ECT on TRD, because rTMS does not require general anesthesia or induce seizures, some individuals may decline ECT so the balance of incremental benefits and harms associated with rTMS may be reasonable compared with ECT. Based on the short-term benefit observed in randomized controlled trials (RCTs) and the lack of alternative treatments, aside from ECT in patients with TRD, rTMS may be considered a treatment option in patients with TRD who meet specific criteria. The evidence for thetaburst stimulation includes a large randomized trial showing noninferiority with another method of rTMS; no significant differences were noted in the number of adverse events. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have migraine headaches who receive rTMS, the evidence includes a sham controlled RCT of 201 patients conducted for submission to the Food and Drug Administration for clearance in 2013. The trial results were limited by the 46% dropout rate and the use of a post hoc analysis. No recent studies have been identified with these devices. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have obsessive-compulsive disorder who receive rTMS, the evidence includes a number of small-to-moderate sized sham-controlled RCTs and a meta-analysis of these studies. The meta-analysis of 15 RCTs (total n=483 patients, range 18-65 patients) found a benefit of rTMS on patient-reported obsessive-compulsive disorder symptom severity at time points ranging from 2 to 6 weeks, but there was substantial variability in the stimulation parameters, including the cortical region that was stimulated and the frequency of stimulation. A more recent RCT compared deep rTMS to sham in 99 patients for 6 weeks, with an additional 4 weeks of follow-up as a secondary outcome. Using a modified ITT analysis (n=94), there was a larger mean change from baseline on the primary efficacy outcome; Yale-Brown Obsessive Compulsive Scale score in the active treatment group (-6.0 points) than the sham group (-2.8 points), translating to a moderate effect size of 0.69. At 6 weeks, the response rate was 38.1% in the active treatment group compared to 11.1% in the sham group (P=0.003), as measured by a 30% or greater decrease in the Yale-Brown Obsessive-Compulsive Scale. The difference in the primary outcome measure between active and sham groups was not statistically significant in the ITT analysis. There was a benefit for rTMS on clinician-reported measures of improvement, but no significant difference between groups on patient-reported disability and impairment. Additional trials with sufficient sample size and follow-up duration are needed to confirm these results. The evidence is insufficient to determine the effect of the technology on health outcomes.
For individuals who have psychiatric or neurological disorders other than depression, migraine, or obsessive-compulsive disorder (e.g., amyotrophic lateral sclerosis, chronic pain, epilepsy, fibromyalgia, panic disorder, Parkinson disease, posttraumatic stress disorder, schizophrenia, stroke, substance use disorder and craving) who receive rTMS, the evidence includes numerous small RCTs and meta-analyses of these randomized trials. The relevant outcomes are symptoms, functional outcomes, and quality of life. The trials included in the meta-analyses are typically small and of low methodologic quality. In addition, stimulation parameters have not been established, and trial results are heterogeneous. There are no large, high-quality trials for any of these conditions demonstrating efficacy or the durability of any treatment effects. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/2015</td>
<td>New medical necessary indications described (coverage for deep rTMS added). Effective 5/1/2015.</td>
</tr>
<tr>
<td>12/2014</td>
<td>New investigational indications described (non-coverage for deep rTMS added). Effective 12/1/2014.</td>
</tr>
<tr>
<td>5/2014</td>
<td>Updated Coding section with ICD10 procedure and diagnosis codes. Effective 10/2015.</td>
</tr>
</tbody>
</table>

Information Pertaining to All Blue Cross Blue Shield Medical Policies

Click on any of the following terms to access the relevant information:

- [Medical Policy Terms of Use](#)
- [Managed Care Guidelines](#)
- [Indemnity/PPO Guidelines](#)
- [Clinical Exception Process](#)
- [Medical Technology Assessment Guidelines](#)

References

