Medical Policy

Laboratory and Genetic Testing for Use of 5-Fluorouracil in Patients with Cancer

Table of Contents
- Policy: Commercial
- Policy: Medicare
- Authorization Information
- Coding Information
- Description
- Policy History
- Information Pertaining to All Policies
- References

Policy Number: 318
BCBSA Reference Number: 2.04.68
NCD/LCD: N/A

Related Policies
None

Policy

Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity
Medicare HMO BlueSM and Medicare PPO BlueSM Members

My5-FU™ testing or other types of assays for determining 5-fluorouracil area under the curve in order to adjust 5-FU dose for colorectal cancer patients or other cancer patients is INVESTIGATIONAL.

Testing for genetic variants in dipyrimidine dehydrogenase (DPYD) or thymidylate synthase (TYMS) genes to guide 5-FU dosing and/or treatment choice in patients with cancer is INVESTIGATIONAL.

Prior Authorization Information
Pre-service approval is required for all inpatient services for all products.
See below for situations where prior authorization may be required or may not be required for outpatient services.
Yes indicates that prior authorization is required.
No indicates that prior authorization is not required.
N/A indicates that this service is primarily performed in an inpatient setting.

<table>
<thead>
<tr>
<th>Outpatient</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Managed Care (HMO and POS)</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Medicare HMO BlueSM</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Medicare PPO BlueSM</td>
<td>This is not a covered service.</td>
</tr>
</tbody>
</table>
CPT Codes / HCPCS Codes / ICD Codes
Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following CPT and HCPCS codes are considered investigational for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue:

CPT Codes

<table>
<thead>
<tr>
<th>HCPCS codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>81232</td>
<td>DYPD (dihydropyrimidine dehydrogenase) (eg, 5-fluorouracil/5-FU and capecitabine drug metabolism), gene analysis, common variant(s) (eg, *2A, *4, *5, *6)</td>
</tr>
<tr>
<td>81346</td>
<td>TYMS (thymidylate synthetase) (eg, 5-fluorouracil/5-FU drug metabolism), gene analysis, common variant(s) (eg, tandem repeat variant)</td>
</tr>
</tbody>
</table>

HCPCS Codes

<table>
<thead>
<tr>
<th>HCPCS codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3722</td>
<td>Dose optimization by area under the curve (AUC) analysis, for infusional 5-fluorouracil</td>
</tr>
</tbody>
</table>

ICD Diagnosis Codes
Investigational for all diagnoses

Description 5-FUROOURACIL
The agent 5-fluorouracil (5-FU) is a widely used antineoplastic chemotherapy drug that targets thymidylate synthase (TYMS) enzyme, which is involved in DNA production. 5-FU has been used for many years to treat solid tumors (eg, colon and rectal cancer, head and neck cancer). In general, the incidence of grade 3 or 4 toxicity (mainly neutropenia, diarrhea, mucositis, and hand-foot syndrome) increases with higher systemic exposure to 5-FU. Several studies also have reported statistically significant positive associations between 5-FU exposure and tumor response. In current practice, however, 5-FU dose is reduced when symptoms of severe toxicity appear, but is seldom increased to promote efficacy.

Based on known 5-FU pharmacology, it is possible to determine a sampling scheme for area under the curve (AUC) determination and to optimize an AUC target and dose-adjustment algorithm for a particular 5-FU chemotherapy regimen and patient population. For each AUC value or range, the algorithm defines the dose adjustment during the next chemotherapy cycle most likely to achieve the target AUC without overshooting and causing severe toxicity.

In clinical research studies, 5-FU blood plasma levels most recently have been determined by high-performance liquid chromatography or liquid chromatography coupled with tandem mass spectrometry. Both methods require expertise to develop an in-house assay and may be less amenable to routine clinical laboratory settings.

Measuring Exposure to 5-FU
Since publication of that Assessment, no prospective trials comparing efficacy and toxicity outcomes in variant testing had poor prognostic capacity to identify patients likely to experience severe 5-FU toxicity. Therefore, both inter- and intrapatient variability in 5-FU plasma concentration during administration is high.

Determination of 5-FU AUC requires complex technology and expertise that may not be readily available in a clinical laboratory setting. In the United States, Saladax Biomedical offers a commercial immunoassay (My5-FU) that quantifies plasma 5-FU concentration from a blood sample drawn during continuous infusion at steady state (18-44 hours after the start of infusion) and provides a dose-adjustment algorithm to maintain plasma 5-FU AUC between 20 and 30 mg/h/L during the next cycle.

Summary

For individuals who have cancer for whom treatment with 5-FU is indicated who receive laboratory assays to determine 5-fluorouracil area under the curve, the evidence includes randomized controlled trials (RCTs), observational studies, and systematic reviews. Relevant outcomes are overall survival, disease-specific survival, test accuracy and validity and treatment-related morbidity. A systematic review of observational studies on analytic validity studies found good correlation between test results; however, reviewers concluded that selected studies had high risk of bias due to excluded samples. Several analyses of patients with colorectal cancer have evaluated clinical validity. For example, 1 study found that the rate of severe toxicity was significantly lower in patients with stage II and III cancer who chose pharmacokinetic monitoring versus body surface area (BSA) monitoring, but progression-free survival did not differ between groups in patients with stage IV or recurrent cancer. No RCTs or nonrandomized comparative studies were identified comparing health outcomes in cancer patients who did and did not have 5-FU dose adjustment using the My5-FU assay and who were treated with chemotherapy regimens used in current clinical practice. A systematic review of the available literature found a significantly higher response rate with BSA-based monitoring and no significant difference in toxicity. Most data were from observational studies and the RCTs were conducted in the 1980s when different chemotherapy protocols were used. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have cancer for whom treatment with 5-FU is indicated who receive genetic testing for variants (eg, in DPYD and TYMS) affecting 5-FU metabolism, the evidence includes observational studies and systematic reviews. Relevant outcomes are overall survival, disease-specific survival, test accuracy and validity, and treatment-related morbidity. A 2010 TEC Assessment concluded that DPYD and TYMS variant testing had poor prognostic capacity to identify patients likely to experience severe 5-FU toxicity. Since publication of that Assessment, no prospective trials comparing efficacy and toxicity outcomes in
patients who did and did not undergo pretreatment DPYD and/or TYMS testing have been published. One study compared outcomes in patients undergoing pretreatment DPYD testing with historical controls who did not receive testing. In that study, rates of grade 3 or higher toxicity were lower in patients who had genetic testing; however, the study was not randomized and lacked concurrent controls. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2018</td>
<td>Clarified coding information.</td>
</tr>
<tr>
<td>5/2017</td>
<td>BCBSA National medical policy review. Policy clarified. Mutations” changed to “variants” in second policy statement. 5/1/2017</td>
</tr>
<tr>
<td>5/2016</td>
<td>BCBSA National medical policy review. Policy clarified to remove “TheraGuide” from policy statement because this test is no longer commercially available; policy statements otherwise unchanged. 5/2016</td>
</tr>
<tr>
<td>5/2015</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>5/2013</td>
<td>New references from BCBSA National medical policy.</td>
</tr>
</tbody>
</table>

Information Pertaining to All Blue Cross Blue Shield Medical Policies

Click on any of the following terms to access the relevant information:

- Medical Policy Terms of Use
- Managed Care Guidelines
- Indemnity/PPO Guidelines
- Clinical Exception Process
- Medical Technology Assessment Guidelines

References

26. Blue Cross and Blue Shield Association Technology Evaluation Center (TEC). Pharmacogenetic Testing to Predict Serious Toxicity From 5-Fluorouracil (5-FU) for Patients Administered 5-FU-Based Chemotherapy for Cancer. TEC Assessments. 2010;24:Tab 13. PMID

