Medical Policy

Stem Cell Therapy for Peripheral Arterial Disease

Table of Contents

- Policy: Commercial
- Policy: Medicare
- Authorization Information
- Coding Information
- Description
- Policy History
- Information Pertaining to All Policies
- References

Policy Number: 348
BCBSA Reference Number: 8.01.55
NCD/LCD: NA

Related Policies

- Orthopedic Applications of Stem Cell Therapy, #254

Policy

Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Medicare HMO BlueSM and Medicare PPO BlueSM Members

Treatment of peripheral arterial disease, including critical limb ischemia, with injection or infusion of stem cells from concentrated bone marrow, expanded in vitro, stimulated from peripheral blood, or from an allogeneic source, is considered INVESTIGATIONAL.

Prior Authorization Information

Pre-service approval is required for all inpatient services for all products.

See below for situations where prior authorization may be required or may not be required for outpatient services.

Yes indicates that prior authorization is required.

No indicates that prior authorization is not required.

N/A indicates that this service is primarily performed in an inpatient setting.

<table>
<thead>
<tr>
<th>Commercial Managed Care (HMO and POS)</th>
<th>Outpatient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This is not a covered service.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commercial PPO and Indemnity</th>
<th>Outpatient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This is not a covered service.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medicare HMO BlueSM</th>
<th>Outpatient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This is not a covered service.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medicare PPO BlueSM</th>
<th>Outpatient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This is not a covered service.</td>
</tr>
</tbody>
</table>

CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.
Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following codes are included below for informational purposes only; this is not an all-inclusive list.

The following CPT codes are considered investigational for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue, and Medicare PPO Blue:

<table>
<thead>
<tr>
<th>CPT Codes</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0263T</td>
<td>Intramuscular autologous bone marrow cell therapy, with preparation of harvested cells, multiple injections, one leg, including ultrasound guidance, if performed; complete procedure including unilateral or bilateral bone marrow harvest</td>
</tr>
<tr>
<td>0264T</td>
<td>Intramuscular autologous bone marrow cell therapy, with preparation of harvested cells, multiple injections, one leg, including ultrasound guidance, if performed; complete procedure excluding bone marrow harvest</td>
</tr>
<tr>
<td>0265T</td>
<td>Intramuscular autologous bone marrow cell therapy, with preparation of harvested cells, multiple injections, one leg, including ultrasound guidance, if performed; unilateral or bilateral bone marrow harvest only for intramuscular autologous bone marrow cell therapy.</td>
</tr>
</tbody>
</table>

Description

Peripheral arterial disease (PAD) is a common atherosclerotic syndrome associated with significant morbidity and mortality. A less common cause of PAD is Buerger disease (also called thromboangiitis obliterans), which is a nonatherosclerotic segmental inflammatory disease that occurs in younger patients and is associated with tobacco use. Development of PAD is characterized by narrowing and occlusion of arterial vessels and eventual reduction in distal perfusion. Critical limb ischemia is the end stage of lower extremity PAD in which severe obstruction of blood flow results in ischemic pain at rest, ulcers, and a significant risk for limb loss.

Physiology

Two endogenous compensating mechanisms may occur with occlusion of arterial vessels: capillary growth (angiogenesis) and development of collateral arterial vessels (arteriogenesis). Capillary growth is mediated by hypoxia-induced release of chemokines and cytokines such as vascular endothelial growth factor and occurs by sprouting of small endothelial tubes from preexisting capillary beds. The resulting capillaries are small and cannot sufficiently compensate for a large occluded artery. Arteriogenesis with collateral growth is, in contrast, initiated by increasing shear forces against vessel walls when blood flow is redirected from the occluded transport artery to the small collateral branches, leading to an increase in the diameter of preexisting collateral arterioles.

The mechanism underlying arteriogenesis includes the migration of bone marrow–derived monocytes to the perivascular space. The bone marrow–derived monocytes adhere to and invade the collateral vessel wall. It is not known if the expansion of the collateral arteriole is due to the incorporation of stem cells into the wall of the vessel or to cytokines released by monocyctic bone marrow cells that induce the proliferation of resident endothelial cells. It has been proposed that bone marrow–derived monocyctic cells may be the putative circulating endothelial progenitor cells. Notably, the same risk factors for advanced ischemia (diabetes, smoking, hyperlipidemia, advanced age) are also risk factors for a lower number of circulating progenitor cells.

Treatment

The standard therapy for severe, limb-threatening ischemia is revascularization aiming to improve blood flow to the affected extremity. If revascularization fails or is not possible, amputation is often necessary.
The rationale of hematopoietic cell or bone marrow–cell therapy in PAD is to induce arteriogenesis by boosting the physiologic repair processes. This requires large numbers of functionally active autologous precursor cells and, subsequently, a large quantity of bone marrow (eg, 240-500 mL) or other source of stem cells. The SmartPReP2 Bone Marrow Aspirate Concentrate System (Harvest Technologies) has been developed as a single-step point-of-care, bedside centrifugation system for the concentration of stem cells from bone marrow. The system is composed of a portable centrifuge and an accessory pack that contains processing kits including a functionally closed dual-chamber sterile processing disposable container. The SmartPReP2 system is designed to concentrate a buffy coat of 20 mL from whole-bone marrow aspirate of 120 mL.

The concentrate of bone marrow aspirate contains a mix of cell types, including lymphocytoid cells, erythroblasts, monocyctoid cells, and granulocytes. Following isolation and concentration, the hematopoietic cell/bone marrow concentrate is administered either intra-arterially or through multiple injections (20 to 60) into the muscle, typically in the gastrocnemius. Other methods of concentrating stem cells include the in vitro expansion of bone marrow–derived stem cells or use of granulocyte-macrophage colony-stimulating factor to mobilize peripheral blood mononuclear cells. There is some discrepancy in the literature regarding the nomenclature of cell types. Studies addressed in this evidence review include the use of mononuclear cells/monocytes and/or mesenchymal stem cells.

The primary outcome in stem cell therapy trials regulated by the U.S. Food and Drug Administration (FDA) is amputation-free survival. Other outcomes for critical limb ischemia include the Rutherford criteria for limb status, healing of ulcers, the Ankle-Brachial Index, transcutaneous oxygen pressure, and pain free walking. The Rutherford criteria include ankle and toe pressure, level of claudication, ischemic rest pain, tissue loss, nonhealing ulcer, and gangrene. The Ankle-Brachial Index measures arterial segmental pressures on the ankle and brachium, and indexes ankle systolic pressure against brachial systolic pressure (normative range, 0.95-1.2 mm Hg). An increase more than 0.1 mm Hg is considered clinically significant. Transcutaneous oxygen pressure is measured with an oxymonitor; a normal range is 70 to 90 mm Hg. Pain-free walking may be measured by time on a treadmill or, more frequently, by distance in a 400-meter walk.

Summary

Critical limb ischemia due to peripheral arterial disease results in pain at rest, ulcers, and significant risk for limb loss. Injection or infusion of stem cells, either concentrated from bone marrow, expanded in vitro, stimulated from peripheral blood, or from an allogeneic source, is being evaluated for the treatment of critical limb ischemia.

For individuals who have peripheral arterial disease who receive stem cell therapy, the evidence includes small randomized trials and systematic reviews. Relevant outcomes are overall survival, symptoms, change in disease status, morbid events, functional outcomes, quality of life, and treatment-related morbidity. The current literature on stem cells as a treatment for critical limb ischemia due to peripheral arterial disease consists primarily of phase 2 studies using various cell preparation methods and methods of administration. A meta-analysis of the trials with the lowest risk of bias has shown no significant benefit of stem cell therapy for overall survival, amputation-free survival, or amputation rates. Well-designed randomized controlled trials with a larger number of subjects and low risk of bias are needed to evaluate the health outcomes of these various procedures. Several are in progress, including multicenter randomized, double-blind, placebo-controlled trials. More data on the safety and durability of these treatments are also needed. The evidence is insufficient to determine the effects of the technology on health outcomes.
Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/2015</td>
<td>Added coding language.</td>
</tr>
<tr>
<td>7/2015</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>6/2013</td>
<td>New references from BCBSA National medical policy.</td>
</tr>
<tr>
<td>5/1/12</td>
<td>New policy describing ongoing non-coverage.</td>
</tr>
</tbody>
</table>

Information Pertaining to All Blue Cross Blue Shield Medical Policies

Click on any of the following terms to access the relevant information:
- Medical Policy Terms of Use
- Managed Care Guidelines
- Indemnity/PPO Guidelines
- Clinical Exception Process
- Medical Technology Assessment Guidelines

References

11. Powell RJ, Comerota AJ, Berceli SA, et al. Interim analysis results from the RESTORE-CLI, a randomized, double-blind multicenter phase II trial comparing expanded autologous bone marrow-

