Medical Policy
Transcatheter Pulmonary Valve Implantation

Table of Contents
- Policy: Commercial
- Coding Information
- Policy: Medicare
- Description
- Authorization Information
- Information Pertaining to All Policies
- Policy History
- References

Policy Number: 403
BCBSA Reference Number: 7.01.131
NCD/LCD: N/A

Related Policies
Transcatheter Aortic Valve Implantation for Aortic Stenosis, #392

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity
Medicare HMO BlueSM and Medicare PPO BlueSM Members

Transcatheter pulmonary valve implantation is considered **MEDICALLY NECESSARY** for patients with congenital heart disease and current right ventricular outflow tract obstruction (RVOT) or regurgitation including the following indications:

- Individuals with right ventricle-to-pulmonary artery conduit with or without bioprosthetic valve with at least moderate pulmonic regurgitation;
- Individuals with native or patched RVOT with at least moderate pulmonic regurgitation;
- Individuals with right ventricle-to-pulmonary artery conduit with or without bioprosthetic valve with pulmonic stenosis (mean RVOT gradient at least 35 mm Hg); or
- Individuals with native or patched RVOT with pulmonic stenosis (mean RVOT gradient at least 35 mm Hg).

Transcatheter pulmonary valve implantation is considered **INVESTIGATIONAL** for all other indications.

Prior Authorization Information
Inpatient
- For services described in this policy, precertification/preauthorization **IS REQUIRED** for all products if the procedure is performed **inpatient**.

Outpatient
- For services described in this policy, see below for products where prior authorization **might be required** if the procedure is performed **outpatient**.
Outpatient

<table>
<thead>
<tr>
<th>Commercial Managed Care (HMO and POS)</th>
<th>Prior authorization is not required.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>Prior authorization is not required.</td>
</tr>
<tr>
<td>Medicare HMO BlueSM</td>
<td>Prior authorization is not required.</td>
</tr>
<tr>
<td>Medicare PPO BlueSM</td>
<td>Prior authorization is not required.</td>
</tr>
</tbody>
</table>

CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following codes are included below for informational purposes only; this is not an all-inclusive list.

The above medical necessity criteria MUST be met for the following codes to be covered for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue:

CPT Codes

<table>
<thead>
<tr>
<th>CPT codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>33477</td>
<td>Transcatheter pulmonary valve implantation, percutaneous approach, including pre-stenting of the valve delivery site, when performed</td>
</tr>
</tbody>
</table>

Description

CONGENITAL HEART DISEASE

Congenital heart disease, including tetralogy of Fallot, pulmonary atresia, and transposition of the great arteries, is generally treated by surgical repair at an early age. This involves reconstruction of the right ventricular outflow tract (RVOT) and pulmonary valve using a surgical homograft or a bovine-derived valved conduit. These repairs are prone to development of pulmonary stenosis or regurgitation over long periods of follow-up.

Because individuals with surgically corrected congenital heart disease repair are living into adulthood, RVOT dysfunction following initial repair has become more common. Calcification of the RVOT conduit can lead to pulmonary stenosis, while aneurysmal dilatation can result in pulmonary regurgitation. RVOT dysfunction can lead to decreased exercise tolerance, potentially fatal arrhythmias, and/or irreversible right ventricular dysfunction.¹

Treatment

Interventions for RVOT dysfunction often require numerous repeat open heart procedures for patients who live into adulthood. Treatment options for pulmonary stenosis are open surgery with valve replacement, balloon dilatation, or percutaneous stenting.¹ Interventions for pulmonary regurgitation are primarily surgical, either reconstruction of the RVOT conduit or replacement of the pulmonary valve. The optimal timing of these interventions is not well understood.²

Transcatheter pulmonary valve replacement offers a less invasive treatment option for patients with prior surgery for congenital heart disease and RVOT dysfunction. It is possible that a less invasive valve replacement technique could spare patients from multiple repeat open heart procedures over long periods of follow-up.

Summary

Transcatheter pulmonary valve implantation (TPVI) is a less invasive alternative to open surgical pulmonary valve replacement or reconstruction for right ventricular outflow tract (RVOT) obstruction. Percutaneous pulmonary valve replacement may be indicated for congenital pulmonary stenosis.
Pulmonary stenosis or regurgitation in a patient with congenital heart disease (CHD) who has previously undergone RVOT surgery are additional indications. Patients with prior CHD repair are at risk of needing repeated reconstruction procedures.

For individuals who have a history of CHD and current RVOT obstruction who receive TPVI with a Food and Drug Administration (FDA)-approved device and indication, the evidence includes prospective, interventional, noncomparative studies, and multiple prospective and retrospective case or cohort series. Relevant outcomes are overall survival, symptoms, functional outcomes, quality of life, hospitalizations, and treatment-related mortality and morbidity. Results of the case series have indicated that there is a high rate of procedural success and low procedural mortality, although the rates of serious procedural adverse events reported ranged from 3.0% to 7.4%. Most valves have demonstrated competent functioning by Doppler echocardiography at 6- to 12-month follow-ups, but complications (eg, stent fractures, need for reinterventions) were reported in an FDA analysis at rates of 18% and 7%, respectively. Other publications with longer follow-up have reported stent fractures in up to 26% of patients; however, most stent fractures did not require reintervention. Studies with follow-up extending to a maximum of 7 years postprocedure have suggested that the functional and hemodynamic improvements are durable, but a relatively high proportion of patients (20%-30%) have required reintervention on the pulmonary valve. No comparative studies were identified, and there is no direct evidence that TPVI reduces future open heart procedures. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have a history of CHD and current RVOT obstruction who receive TPVI with a non-FDA-approved device or indication, the evidence includes case series. Relevant outcomes are overall survival, symptoms, functional outcomes, quality of life, hospitalizations, and treatment-related mortality and morbidity. There is limited evidence on the off-label use of TPVI including the use of a non-FDA-approved valve or use of an approved valve for a non-FDA-approved indication. The published case series enrolled relatively few patients and are heterogeneous regarding devices used and indications for TPVI. The evidence is insufficient to determine the effects of the technology on health outcomes. In patients who are not candidates for open surgery or who are at high risk for surgery due to other medical comorbidities, alternative treatment options are limited. Clinical vetting obtained in 2011 indicated near-uniform support for the use of TPVI in both groups of these patients. Based on this clinical vetting and evidence on short-term success, TPVI can be considered medically necessary for patients who are not candidates for open repair or who are at high risk for open repair.

Clinical input obtained in 2018 supports that the following indications provide a clinically meaningful improvement in net health outcome and are consistent with generally accepted medical practice.

- Use of TPVI for individuals with right ventricle-to-pulmonary artery conduit with or without bioprosthetic valve with at least moderate pulmonic regurgitation;
- Use of TPVI for individuals with native or patched RVOT with at least moderate pulmonic regurgitation;
- Use of TPVI for individuals with right ventricle-to-pulmonary artery conduit with or without bioprosthetic valve with pulmonic stenosis (mean RVOT gradient at least 35 mm Hg); or
- Use of TPVI for individuals with native or patched RVOT with pulmonic stenosis (mean RVOT gradient at least 35 mm Hg).

Thus, the above indications may be considered medically necessary considering the suggestive evidence and clinical input support.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/2016</td>
<td>BCBSA National medical policy review. FDA approval information updated. References added. 9/1/2016</td>
</tr>
</tbody>
</table>
7/2016 | New references added from BCBSA National medical policy.
---|---
1/2016 | Clarified coding information.
12/2014 | New references added from BCBSA National medical policy.
12/1/2012 | New policy describing ongoing coverage and non-coverage. Effective 12/1/2012.

Information Pertaining to All Blue Cross Blue Shield Medical Policies
Click on any of the following terms to access the relevant information:
- Medical Policy Terms of Use
- Managed Care Guidelines
- Indemnity/PPO Guidelines
- Clinical Exception Process
- Medical Technology Assessment Guidelines

References

