Medical Policy
Treatment of Hyperhidrosis

Table of Contents
• Policy: Commercial
• Coding Information
• Policy: Medicare
• Description
• Authorization Information
• Information Pertaining to All Policies
• Reference

Policy Number: 406
BCBSA Reference Number: 8.01.19
NCD/LCD: N/A

Related Policies
None

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity
Medicare HMO BlueSM and Medicare PPO BlueSM Members

Treatment of primary focal hyperhidrosis using the following therapies (see Table PG1) may be considered MEDICALLY NECESSARY with any of the following medical conditions:

• Acrocyanosis of the hands; or
• History of recurrent skin maceration with bacterial or fungal infections; or
• History of recurrent secondary infections; or
• History of persistent eczematous dermatitis in spite of medical treatments with topical dermatologic or systemic anticholinergic agents.

Treatment of hyperhidrosis is considered NOT MEDICALLY NECESSARY in the absence of functional impairment or any of the above medical conditions.

Table PG1 summarizes the treatments that may be considered MEDICALLY NECESSARY by focal region.

Table PG2 summarizes the treatments that are considered INVESTIGATIONAL by focal region.

Table PG1. Treatments for Hyperhidrosis Considered MEDICALLY NECESSARY

<table>
<thead>
<tr>
<th>Focal Regions</th>
<th>Treatments Considered Medically Necessary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axillary</td>
<td>• Aluminum chloride 20% solution</td>
</tr>
<tr>
<td></td>
<td>• Botulinum toxin for severe primary axillary hyperhidrosis inadequately managed with topical agents, in patients ≥18 y</td>
</tr>
</tbody>
</table>
ETS and surgical excision of axillary sweat glands, if conservative treatment (ie, aluminum chloride or botulinum toxin, individually and in combination) has failed

<table>
<thead>
<tr>
<th>Region</th>
<th>Considered Treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palmar</td>
<td>Aluminum chloride 20% solution
Botulinum toxin type A products for severe primary palmar hyperhidrosis inactively managed with topical agents, in patients ≥18 y
ETS, if conservative treatment (ie, aluminum chloride or botulinum toxin type A, individually and in combination) has failed</td>
</tr>
<tr>
<td>Plantar</td>
<td>Aluminum chloride 20% solution</td>
</tr>
<tr>
<td>Craniofacial</td>
<td>Aluminum chloride 20% solution - ETS, if conservative treatment (ie, aluminum chloride) has failed</td>
</tr>
</tbody>
</table>

Aluminum chloride solution is approved by FDA for treatment of primary hyperhidrosis. At least 1 botulinum toxin product is FDA-approved for treatment in adults of severe axillary hyperhidrosis inadequately managed by topical agents.

ETS: endoscopic transthoracic sympathectomy; FDA: Food and Drug Administration.

Table PG2. Treatments for Hyperhidrosis Considered INVESTIGATIONAL.

<table>
<thead>
<tr>
<th>Focal Regions</th>
<th>Treatments Considered Investigational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axillary</td>
<td>Axillary liposuction
 Iontophoresis
 Microwave treatment
 Radiofrequency ablation</td>
</tr>
<tr>
<td>Palmar</td>
<td>RimabotulinumtoxinB
 Iontophoresis
 Microwave treatment
 Radiofrequency ablation</td>
</tr>
<tr>
<td>Plantar</td>
<td>Botulinum toxin
 Iontophoresis
 Lumbar sympathectomy
 Microwave treatment
 Radiofrequency ablation</td>
</tr>
<tr>
<td>Craniofacial</td>
<td>Botulinum toxin
 Iontophoresis
 Microwave treatment
 Radiofrequency ablation</td>
</tr>
</tbody>
</table>

The following treatments may be considered **MEDICALLY NECESSARY** for the treatment of severe secondary gustatory hyperhidrosis (see below for list of gustatory hyperhidrosis conditions):
- Aluminum chloride 20% solution
- Surgical options (ie, tympanic neurectomy), if conservative treatment has failed.

Other treatments are considered **INVESTIGATIONAL** as a treatment for severe secondary gustatory hyperhidrosis including, but not limited to:
- Botulinum toxin
- Iontophoresis.

A multispecialty working group defines primary focal hyperhidrosis as a condition that is characterized by visible, excessive sweating of at least 6 months in duration without apparent cause and with at least 2 of the following features: bilateral and relatively symmetric sweating, impairment of daily activities, frequency of at least once per week, age at onset younger than 25 years, positive family history, and cessation of focal sweating during sleep.
Gustatory hyperhidrosis conditions:
- Frey syndrome
- Encephalitis
- Syringomyelia
- Diabetic neuropathies
- Herpes zoster parotitis
- Parotid abscess.

Prior Authorization Information

Inpatient
- For services described in this policy, precertification/preauthorization **IS REQUIRED** if the procedure is performed **inpatient**.

Outpatient
- For services described in this policy, see below for situations where prior authorization **might be required** if the procedure is performed **outpatient**.

<table>
<thead>
<tr>
<th>Provider Type</th>
<th>Outpatient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Managed Care (HMO and POS)</td>
<td>Prior authorization is not required.</td>
</tr>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>Prior authorization is not required.</td>
</tr>
<tr>
<td>Medicare HMO Blue℠</td>
<td>Prior authorization is not required.</td>
</tr>
<tr>
<td>Medicare PPO Blue℠</td>
<td>Prior authorization is not required.</td>
</tr>
</tbody>
</table>

CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

CPT Codes

<table>
<thead>
<tr>
<th>CPT codes</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>32664</td>
<td>Thoracoscopic excision of sympathetic chain, surgical</td>
</tr>
<tr>
<td>69676</td>
<td>Tympanic neurectomy</td>
</tr>
</tbody>
</table>

ICD-10 Diagnosis Codes

<table>
<thead>
<tr>
<th>ICD-10 Diagnosis codes</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L74510</td>
<td>Primary Focal Hyperhidrosis, Axilla</td>
</tr>
<tr>
<td>L74511</td>
<td>Primary Focal Hyperhidrosis, Face</td>
</tr>
<tr>
<td>L74512</td>
<td>Primary Focal Hyperhidrosis, Palms</td>
</tr>
<tr>
<td>L74513</td>
<td>Primary Focal Hyperhidrosis, Soles</td>
</tr>
<tr>
<td>L7452</td>
<td>Secondary Focal Hyperhidrosis</td>
</tr>
</tbody>
</table>

Description

Hyperhidrosis

Hyperhidrosis has been defined as excessive sweating, beyond a level required to maintain normal body temperature, in response to heat exposure or exercise. It can be classified as primary or secondary. Primary focal hyperhidrosis is idiopathic, typically involving the hands (palmar), feet (plantar), or axillae (underarms). Secondary hyperhidrosis can result from a variety of drugs (eg, tricyclic antidepressants, selective serotonin reuptake inhibitors) or underlying diseases/conditions (eg, febrile diseases, diabetes, menopause). Secondary hyperhidrosis is usually generalized or craniofacial sweating.
Secondary gustatory hyperhidrosis is excessive sweating on ingesting highly spiced foods. This trigeminovascular reflex typically occurs symmetrically on the scalp or face and predominately over the forehead, lips, and nose. Secondary facial gustatory occurs independently of the nature of the ingested food. This phenomenon frequently occurs after injury or surgery in the region of the parotid gland. Frey syndrome is an uncommon type of secondary gustatory hyperhidrosis that arises from injury to or surgery near the parotid gland resulting in damage to the secretory parasympathetic fibers of the facial nerve. After the injury, these fibers regenerate, and miscommunication occurs between them and the severed postganglionic sympathetic fibers that supply the cutaneous sweat glands and blood vessels. The aberrant connection results in gustatory sweating and facial flushing with mastication. Aberrant secondary gustatory sweating follows up to 73% of surgical sympathectomies and is particularly common after bilateral procedures.

The consequences of hyperhidrosis are primarily psychosocial. Symptoms such as fever, night sweats, or weight loss require further investigation to rule out secondary causes. Sweat production can be assessed with the Minor starch-iodine test, which is a simple qualitative measure to identify specific sites of involvement.

Treatment

A variety of therapies have been investigated for primary hyperhidrosis, including topical therapy with aluminum chloride, oral anticholinergic medications, iontophoresis, intradermal injections of botulinum toxin, endoscopic transthoracic sympathectomy, and surgical excision of axillary sweat glands. Treatment of secondary hyperhidrosis focuses on the treatment of the underlying cause, such as discontinuing certain drugs or hormone replacement therapy as a treatment for menopausal symptoms.

Iontophoresis uses an electrical current to deliver medication transdermally. A charged ionic drug is placed on the skin with an electrode of the same charge, which drives the drug into the skin, with the purpose of achieving better penetration of the drug into the underlying tissue. The benefits of this method would be an enhancement of treatment effects and a reduction in adverse events associated with systemic administration of the drug.

Botulinum toxin is a potent neurotoxin that blocks cholinergic nerve terminals, which prevents hyperstimulation of eccrine sweat glands that lead to excessive sweating. Therefore, intracutaneous injections have been investigated as a treatment of gustatory hyperhidrosis and focal primary hyperhidrosis, most frequently involving the axillae or palms. The drawback of this approach is the need for repeated injections, which have led some to consider surgical approaches.

Surgical treatment options include removal of the eccrine glands and/or interruption of the sympathetic nerves. Eccrine sweat glands produce an aqueous secretion, the overproduction of which is primarily responsible for hyperhidrosis. These glands are innervated by the sympathetic nervous system. Surgical removal has been performed in patients with severe isolated axillary hyperhidrosis.

Various surgical techniques of sympathectomy have been tested. The second (T2) and third (T3) thoracic ganglia are responsible for palmar hyperhidrosis, the fourth (T4) thoracic ganglion controls axillary hyperhidrosis, and the first (T1) thoracic ganglion controls craniofacial hyperhidrosis. Thoracic sympathectomy has been investigated as a potentially curative procedure, primarily for combined palmar and axillary hyperhidrosis unresponsive to nonsurgical treatments. While accepted as an effective treatment, sympathectomy is not without complications. In addition to the immediate surgical complications of pneumothorax or temporary Horner syndrome, compensatory sweating on the trunk generally occurs in most patients, with different degrees of severity. Medical researchers have investigated whether certain approaches (eg, T3 sympathectomy vs T4 sympathectomy) result in less compensatory sweating, but there remains a lack of consensus about which approach best minimizes the risk of this adverse event. Also, with lumbar sympathectomy for plantar hyperhidrosis, there has been concern about the risk of postoperative sexual dysfunction in both men and women.
Outcome Measures
Outcomes from different surgical and medical treatment modalities are best assessed using a combination of tools. Quantitative tools include gravimetry, evaporimetry, and the Minor starch-iodine test. Qualitative assessment tools include general health surveys and hyperhidrosis-specific surveys. Of these, the Hyperhidrosis Disease Severity Scale (see Appendix Table 1) has had a good correlation to other assessment tools and is practical in the clinical setting.

Appendix Table 1. The Hyperhidrosis Disease Severity Scale

<table>
<thead>
<tr>
<th>Score</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>My underarm sweating is never noticeable and never interferes with my daily activities</td>
</tr>
<tr>
<td>2</td>
<td>My underarm sweating is tolerable but sometimes interferes with my daily activities</td>
</tr>
<tr>
<td>3</td>
<td>My underarm sweating is barely tolerable and frequently interferes with my daily activities</td>
</tr>
<tr>
<td>4</td>
<td>My underarm sweating is intolerable and always interferes with my daily activities</td>
</tr>
</tbody>
</table>

Summary
Hyperhidrosis, or excessive sweating, can lead to impairments in psychologic and social functioning. Various treatments for hyperhidrosis are available, such as topical antiperspirant agents (eg, aluminum chloride 20% solution), oral medications, botulinum toxin, and surgical procedures.

Primary Focal Hyperhidrosis

Iontophoresis
For individuals who have primary focal hyperhidrosis (ie, axillary, palmar, plantar, craniofacial) who receive iontophoresis, the evidence includes a systematic review, a randomized controlled trial (RCT), and case series. The relevant outcomes are symptoms, quality of life (QOL), and treatment-related morbidity. The RCT found that iontophoresis was less effective than botulinum toxin in the short-term treatment of palmar hyperhidrosis. Additional RCTs are needed comparing iontophoresis with sham or active treatment in patients with various types of primary focal hyperhidrosis. The evidence is insufficient to determine the effects of the technology on health outcomes.

Botulinum Toxins
For individuals who have primary axillary hyperhidrosis who receive botulinum toxin type A or B, the evidence includes RCTs and a meta-analysis. The relevant outcomes are symptoms, QOL, and treatment-related morbidity. Placebo-controlled randomized trials have generally found better outcomes in the botulinum toxin groups. A meta-analysis showed that botulinum toxin injections significantly decreased sweating in the short (2 to 4 weeks) and long-term (16 weeks), and significantly improved Hyperhidrosis Disease Severity Scale scores. Several RCTs have compared different botulinum toxin type A formulations with botulinum toxin type A and B formulations in patients with axillary hyperhidrosis. Although these studies had small sample sizes, their findings suggested that, with appropriate dosage adjustments, there are similar levels of efficacy and adverse events. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have primary palmar hyperhidrosis who receive botulinum toxin type A, the evidence includes RCTs. The relevant outcomes are symptoms, QOL, and treatment-related morbidity. Placebo-controlled randomized trials have generally found better outcomes in the botulinum toxin groups. RCTs comparing botulinum toxin type A formulations in patients with primary palmar hyperhidrosis have generally found no significant differences in outcomes. Although these studies had small sample sizes, their findings suggested that, with appropriate dosage adjustments, there are similar levels of efficacy and adverse events. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have primary palmar hyperhidrosis who receive botulinum toxin type B, the evidence includes an RCT. The relevant outcomes are symptoms, QOL, and treatment-related morbidity. One small placebo-controlled randomized trial did not clearly demonstrate the efficacy of botulinum toxin type
B in patients with palmar hyperhidrosis. Also, a high rate of adverse events was reported. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have primary plantar hyperhidrosis who receive botulinum toxin type A or B, the evidence includes no RCTs. The relevant outcomes are symptoms, QOL, and treatment-related morbidity. RCTs are needed comparing botulinum toxin with placebo or active treatment in patients who had primary plantar hyperhidrosis. The evidence is insufficient to determine the effects of the technology on health outcomes.

Microwave

For individuals who have primary focal hyperhidrosis (ie, axillary, palmar, plantar, craniofacial) who receive microwave treatment, the evidence includes a systematic review, an RCT, and case series. The relevant outcomes are symptoms, QOL, and treatment-related morbidity. The RCT, conducted in patients with primary axillary hyperhidrosis, found a short-term benefit of microwave treatment vs sham therapy, but there was a high rate of skin-related adverse events. Additional RCTs are needed comparing radiofrequency ablation with sham or active treatment in patients with various types of primary focal hyperhidrosis. The evidence is insufficient to determine the effects of the technology on health outcomes.

Radiofrequency Ablation

For individuals who have primary focal hyperhidrosis (ie, axillary, palmar, plantar, craniofacial) who receive radiofrequency ablation, the evidence includes a nonrandomized cohort study. The relevant outcomes are symptoms, QOL, and treatment-related morbidity. The cohort study, conducted in patients with palmar hyperhidrosis, found a higher cure rate in the surgery group than in the radiofrequency ablation group and found a similar rate of compensatory sweating in both groups. RCTs are needed comparing radiofrequency ablation with sham or active treatment in patients with various types of primary focal hyperhidrosis. The evidence is insufficient to determine the effects of the technology on health outcomes.

Surgery

For individuals who have primary axillary hyperhidrosis who receive surgical excision of axillary sweat glands, the evidence includes review articles. The relevant outcomes are symptoms, QOL, and treatment-related morbidity. The evidence has shown that excision is highly effective, and this treatment is considered the standard of care for this indication. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have primary axillary and palmar hyperhidrosis who receive endoscopic transthoracic sympathectomy, the evidence includes several RCTs, a meta-analysis, and case series. The relevant outcomes are symptoms, QOL, and treatment-related morbidity. The meta-analysis found a high rate of clinical efficacy after endoscopic transthoracic sympathectomy, although the rate of postoperative compensatory sweating was substantial. Subsequent studies have supported these findings. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have primary plantar hyperhidrosis who receive lumbar sympathectomy, the evidence includes case series. The relevant outcomes are symptoms, QOL, and treatment-related morbidity. Case series have reported high rates of clinical efficacy but findings are inconclusive due to the lack of control groups. Moreover, there have been substantial rates of compensatory sweating and concerns about adverse events on sexual functioning. The evidence is insufficient to determine the effects of the technology on health outcomes.

Secondary Gustatory Hyperhidrosis

For individuals who have severe secondary gustatory hyperhidrosis who receive iontophoresis or botulinum toxin, the evidence includes uncontrolled studies and systematic reviews. The relevant outcomes are symptoms, QOL, and treatment-related morbidity. The systematic reviews did not identify any relevant RCTs. RCTs are needed to evaluate the safety and efficacy of these treatments for severe
secondary gustatory hyperhidrosis. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have severe secondary gustatory hyperhidrosis who receive tympanic neurectomy, the evidence includes uncontrolled studies and systematic reviews. The relevant outcomes are symptoms, QOL, and treatment-related morbidity. This treatment has high success rates, without the need for repeated interventions, and is considered standard of care for this indication. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/2016</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>8/2014</td>
<td>Clarified coding information.</td>
</tr>
<tr>
<td>10/2012</td>
<td>Updated Treatment of Hyperhidrosis excluding Botulinum Toxin transferred from medical policy 144, Treatment of Hyperhidrosis.</td>
</tr>
<tr>
<td>11/2011</td>
<td>Reviewed at MPG – Plastic Surgery and Dermatology, no changes in coverage.</td>
</tr>
<tr>
<td>12/2010</td>
<td>Reviewed at MPG-Plastic Surgery and Dermatology, no coverage changes were made.</td>
</tr>
<tr>
<td>12/2009</td>
<td>Reviewed at MPG Plastic Surgery and Dermatology, no changes in coverage were made.</td>
</tr>
</tbody>
</table>

Information Pertaining to All Blue Cross Blue Shield Medical Policies

Click on any of the following terms to access the relevant information:
- Medical Policy Terms of Use
- Managed Care Guidelines
- Indemnity/PPO Guidelines
- Clinical Exception Process
- Medical Technology Assessment Guidelines

References

2. Blue Cross and Blue Shield Association Technology Evaluation Center (TEC). Iontophoresis for Medical Indications. TEC Assessments 2003; Volume 18, Tab 3.

