Medical Policy
Computed Tomography Perfusion Imaging of the Brain

Table of Contents
• Policy: Commercial
• Coding Information
• Information Pertaining to All Policies
• Policy: Medicare
• Description
• References
• Authorization Information
• Policy History

Policy Number: 448
BCBSA Reference Number: 6.01.49
NCD/LCD: N/A

Related Policies
• Endovascular Procedures for Intracranial Arterial Disease (Atherosclerosis and Aneurysms), #323

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Medicare HMO Blue℠ and Medicare PPO Blue℠ Members

Computed tomography (CT)-based perfusion imaging may be considered MEDICALLY NECESSARY to select patients with anterior large-vessel stroke for mechanical embolectomy.

CT-based perfusion imaging of the brain is INVESTIGATIONAL for all other indications.

Prior Authorization Information
Inpatient
• For services described in this policy, precertification/preauthorization IS REQUIRED for all products if the procedure is performed inpatient.

Outpatient
• For services described in this policy, see below for products where prior authorization might be required if the procedure is performed outpatient.

<table>
<thead>
<tr>
<th></th>
<th>Outpatient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Managed Care (HMO and POS)</td>
<td>Prior authorization is not required.</td>
</tr>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>Prior authorization is not required.</td>
</tr>
<tr>
<td>Medicare HMO Blue℠</td>
<td>Prior authorization is not required.</td>
</tr>
<tr>
<td>Medicare PPO Blue℠</td>
<td>Prior authorization is not required.</td>
</tr>
</tbody>
</table>

CPT Codes / HCPCS Codes / ICD Codes
Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.
Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following codes are included below for informational purposes only; this is not an all-inclusive list.

The above medical necessity criteria MUST be met for the following codes to be covered for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue:

CPT Codes

<table>
<thead>
<tr>
<th>CPT codes</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0042T</td>
<td>Cerebral perfusion analysis using computed tomography with contrast administration, including post-processing of parametric maps with determination of cerebral blood flow, cerebral blood volume, and mean transit time</td>
</tr>
</tbody>
</table>

The following ICD Diagnosis Codes are considered medically necessary when submitted with the CPT codes above if medical necessity criteria are met:

ICD-10 Diagnosis Codes

<table>
<thead>
<tr>
<th>ICD-10-CM diagnosis codes</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I63.00</td>
<td>Cerebral infarction due to thrombosis of unspecified precerebral artery</td>
</tr>
<tr>
<td>I63.011</td>
<td>Cerebral infarction due to thrombosis of right vertebral artery</td>
</tr>
<tr>
<td>I63.012</td>
<td>Cerebral infarction due to thrombosis of left vertebral artery</td>
</tr>
<tr>
<td>I63.013</td>
<td>Cerebral infarction due to thrombosis of bilateral vertebral arteries</td>
</tr>
<tr>
<td>I63.019</td>
<td>Cerebral infarction due to thrombosis of unspecified vertebral artery</td>
</tr>
<tr>
<td>I63.02</td>
<td>Cerebral infarction due to thrombosis of basilar artery</td>
</tr>
<tr>
<td>I63.031</td>
<td>Cerebral infarction due to thrombosis of right carotid artery</td>
</tr>
<tr>
<td>I63.032</td>
<td>Cerebral infarction due to thrombosis of left carotid artery</td>
</tr>
<tr>
<td>I63.033</td>
<td>Cerebral infarction due to thrombosis of bilateral carotid arteries</td>
</tr>
<tr>
<td>I63.039</td>
<td>Cerebral infarction due to thrombosis of unspecified carotid artery</td>
</tr>
<tr>
<td>I63.09</td>
<td>Cerebral infarction due to thrombosis of other precerebral artery</td>
</tr>
<tr>
<td>I63.10</td>
<td>Cerebral infarction due to embolism of unspecified precerebral artery</td>
</tr>
<tr>
<td>I63.111</td>
<td>Cerebral infarction due to embolism of right vertebral artery</td>
</tr>
<tr>
<td>I63.112</td>
<td>Cerebral infarction due to embolism of left vertebral artery</td>
</tr>
<tr>
<td>I63.113</td>
<td>Cerebral infarction due to embolism of bilateral vertebral arteries</td>
</tr>
<tr>
<td>I63.119</td>
<td>Cerebral infarction due to embolism of unspecified vertebral artery</td>
</tr>
<tr>
<td>I63.12</td>
<td>Cerebral infarction due to embolism of basilar artery</td>
</tr>
<tr>
<td>I63.131</td>
<td>Cerebral infarction due to embolism of right carotid artery</td>
</tr>
<tr>
<td>I63.132</td>
<td>Cerebral infarction due to embolism of left carotid artery</td>
</tr>
<tr>
<td>I63.133</td>
<td>Cerebral infarction due to embolism of bilateral carotid arteries</td>
</tr>
<tr>
<td>I63.139</td>
<td>Cerebral infarction due to embolism of unspecified carotid artery</td>
</tr>
<tr>
<td>I63.19</td>
<td>Cerebral infarction due to embolism of other precerebral artery</td>
</tr>
<tr>
<td>I63.20</td>
<td>Cerebral infarction due to unspecified occlusion or stenosis of unspecified precerebral arteries</td>
</tr>
<tr>
<td>I63.211</td>
<td>Cerebral infarction due to unspecified occlusion or stenosis of right vertebral artery</td>
</tr>
<tr>
<td>I63.212</td>
<td>Cerebral infarction due to unspecified occlusion or stenosis of left vertebral artery</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>I63.213</td>
<td>Cerebral infarction due to unspecified occlusion or stenosis of bilateral vertebral arteries</td>
</tr>
<tr>
<td>I63.219</td>
<td>Cerebral infarction due to unspecified occlusion or stenosis of unspecified vertebral artery</td>
</tr>
<tr>
<td>I63.22</td>
<td>Cerebral infarction due to unspecified occlusion or stenosis of basilar artery</td>
</tr>
<tr>
<td>I63.231</td>
<td>Cerebral infarction due to unspecified occlusion or stenosis of right carotid arteries</td>
</tr>
<tr>
<td>I63.232</td>
<td>Cerebral infarction due to unspecified occlusion or stenosis of left carotid arteries</td>
</tr>
<tr>
<td>I63.233</td>
<td>Cerebral infarction due to unspecified occlusion or stenosis of bilateral carotid arteries</td>
</tr>
<tr>
<td>I63.239</td>
<td>Cerebral infarction due to unspecified occlusion or stenosis of unspecified carotid artery</td>
</tr>
<tr>
<td>I63.29</td>
<td>Cerebral infarction due to unspecified occlusion or stenosis of other precerebral arteries</td>
</tr>
<tr>
<td>I63.30</td>
<td>Cerebral infarction due to thrombosis of unspecified cerebral artery</td>
</tr>
<tr>
<td>I63.311</td>
<td>Cerebral infarction due to thrombosis of right middle cerebral artery</td>
</tr>
<tr>
<td>I63.312</td>
<td>Cerebral infarction due to thrombosis of left middle cerebral artery</td>
</tr>
<tr>
<td>I63.313</td>
<td>Cerebral infarction due to thrombosis of bilateral middle cerebral arteries</td>
</tr>
<tr>
<td>I63.319</td>
<td>Cerebral infarction due to thrombosis of unspecified middle cerebral artery</td>
</tr>
<tr>
<td>I63.321</td>
<td>Cerebral infarction due to thrombosis of right anterior cerebral artery</td>
</tr>
<tr>
<td>I63.322</td>
<td>Cerebral infarction due to thrombosis of left anterior cerebral artery</td>
</tr>
<tr>
<td>I63.323</td>
<td>Cerebral infarction due to thrombosis of bilateral anterior cerebral arteries</td>
</tr>
<tr>
<td>I63.329</td>
<td>Cerebral infarction due to thrombosis of unspecified anterior cerebral artery</td>
</tr>
<tr>
<td>I63.331</td>
<td>Cerebral infarction due to thrombosis of right posterior cerebral artery</td>
</tr>
<tr>
<td>I63.332</td>
<td>Cerebral infarction due to thrombosis of left posterior cerebral artery</td>
</tr>
<tr>
<td>I63.333</td>
<td>Cerebral infarction due to thrombosis of bilateral posterior cerebral arteries</td>
</tr>
<tr>
<td>I63.339</td>
<td>Cerebral infarction due to thrombosis of unspecified posterior cerebral artery</td>
</tr>
<tr>
<td>I63.341</td>
<td>Cerebral infarction due to thrombosis of right cerebellar artery</td>
</tr>
<tr>
<td>I63.342</td>
<td>Cerebral infarction due to thrombosis of left cerebellar artery</td>
</tr>
<tr>
<td>I63.343</td>
<td>Cerebral infarction due to thrombosis of bilateral cerebellar arteries</td>
</tr>
<tr>
<td>I63.349</td>
<td>Cerebral infarction due to thrombosis of unspecified cerebellar artery</td>
</tr>
<tr>
<td>I63.39</td>
<td>Cerebral infarction due to thrombosis of other cerebral artery</td>
</tr>
<tr>
<td>I63.40</td>
<td>Cerebral infarction due to embolism of unspecified cerebral artery</td>
</tr>
<tr>
<td>I63.411</td>
<td>Cerebral infarction due to embolism of right middle cerebral artery</td>
</tr>
<tr>
<td>I63.412</td>
<td>Cerebral infarction due to embolism of left middle cerebral artery</td>
</tr>
<tr>
<td>I63.413</td>
<td>Cerebral infarction due to embolism of bilateral middle cerebral arteries</td>
</tr>
<tr>
<td>I63.419</td>
<td>Cerebral infarction due to embolism of unspecified middle cerebral artery</td>
</tr>
<tr>
<td>I63.421</td>
<td>Cerebral infarction due to embolism of right anterior cerebral artery</td>
</tr>
<tr>
<td>I63.422</td>
<td>Cerebral infarction due to embolism of left anterior cerebral artery</td>
</tr>
<tr>
<td>I63.423</td>
<td>Cerebral infarction due to embolism of bilateral anterior cerebral arteries</td>
</tr>
<tr>
<td>I63.429</td>
<td>Cerebral infarction due to embolism of unspecified anterior cerebral artery</td>
</tr>
<tr>
<td>I63.431</td>
<td>Cerebral infarction due to embolism of right posterior cerebral artery</td>
</tr>
<tr>
<td>I63.432</td>
<td>Cerebral infarction due to embolism of left posterior cerebral artery</td>
</tr>
<tr>
<td>I63.433</td>
<td>Cerebral infarction due to embolism of bilateral posterior cerebral arteries</td>
</tr>
<tr>
<td>I63.439</td>
<td>Cerebral infarction due to embolism of unspecified posterior cerebral artery</td>
</tr>
<tr>
<td>I63.441</td>
<td>Cerebral infarction due to embolism of right cerebellar artery</td>
</tr>
<tr>
<td>I63.442</td>
<td>Cerebral infarction due to embolism of left cerebellar artery</td>
</tr>
<tr>
<td>I63.443</td>
<td>Cerebral infarction due to embolism of bilateral cerebellar arteries</td>
</tr>
</tbody>
</table>
DESCRIPTION

Acute Stroke

The goal of acute stroke thrombolytic treatment is to rescue the ischemic penumbra, an area of the brain that surrounds the infarct core and is hypoperfused but does not die quickly. Multimodal computed tomography (CT) and magnetic resonance imaging (MRI) can be used to assess the cerebral parenchyma, vasculature, and tissue viability in the acute ischemic stroke setting and are used to detect ischemic tissue and exclude hemorrhage and other conditions that mimic acute cerebral ischemia. Non-contrast CT is used to rule out intracranial hemorrhage, tumor, or infection. Diffusion-weighted MRI is used to identify acute infarction, and a gradient-recalled echo sequence is used to exclude intracerebral hemorrhage.
CT angiography and magnetic resonance angiography are used to evaluate intra- and extracranial vasculature to detect the vascular occlusion and potentially guide therapy (eg, intravenous thrombolysis or mechanical thrombectomy).

The approved therapy, use of an intravenous tissue plasminogen activator, requires only a non-contrast CT scan to exclude the presence of hemorrhage (a contraindication to use of the drug). Current guidelines are to administer tissue plasminogen activator within the first three hours after an ischemic event, preceded by a CT scan. Many patients, however, do not present to the emergency department within the three-hour window, and thrombolysis carries a risk of intracranial hemorrhage. Thus, more sophisticated imaging may be needed to select the proper use of intra-arterial thrombolysis or mechanical thrombectomy in patients who present more than three hours after an ischemic stroke. Perfusion imaging is also being evaluated in the management of other neurologic conditions, such as subarachnoid hemorrhage and head trauma.

The potential utility of perfusion imaging for acute stroke is as follows:
- identification of brain regions with extremely low cerebral blood flow, which represent the core
- identification of patients with at-risk brain regions (acutely ischemic but viable penumbra) that may be salvageable with successful intra-arterial thrombolysis beyond the standard three-hour window
- triage of patients with at-risk brain regions to other available therapies, such as induced hypertension or mechanical clot retrieval
- decisions regarding intensive monitoring of patients with large, abnormally perfused brain regions
- biologically based management of patients who awaken with a stroke for which the precise time of onset is unknown.

Additional potential uses of CT perfusion (CTP) in acute stroke may include the following:
- detection and differential diagnosis (eg, excluding stroke mimics such as a transient ischemic attack, complex migraine, seizure, conversion disorders, hypoglycemia, brain tumors)
- determination of stroke subtype
- determination of stroke extent, including additional vascular territories at risk
- identification of patients at high early risk of stroke following a transient ischemic attack
- determining the need for blood pressure management
- establishing prognosis.

Similar information can be provided by CT and MRI regarding infarct core and penumbra. However, multimodal CT has a short protocol time (5-6 minutes) and, because it can be performed with any modern CT equipment, is more widely available in the emergency department setting. CTP is performed by capturing images as an iodinated contrast agent bolus passes through the cerebral circulation and accumulates in the cerebral tissues. (Older perfusion methodologies such as single-photon emission CT and xenon-enhanced CT scanning use a diffusible tracer.) The quantitative perfusion parameters are calculated from density changes for each pixel over time with the commercially available deconvolution-based software, in which cerebral blood flow is equal to regional cerebral blood volume divided by mean transit time. CT angiography and CTP imaging require ionizing radiation and iodinated contrast. It is estimated that typical CTP imaging deposits a slightly greater radiation dose than a routine unenhanced head CT (≈ 3.3 mSv).

Subarachnoid Hemorrhage and Cerebral Vasospasm

Cerebral vasospasm is a major cause of morbidity and mortality following aneurysmal SAH in patients who survive the initial hemorrhage and can be seen in about two-thirds of patients with aneurysmal SAH. The typical onset of cerebral vasospasm occurs 3 to 5 days after hemorrhage, with maximal narrowing on digital subtraction angiography at 5 to 14 days. Currently, the diagnosis of vasospasm and the management decisions rely on clinical examination, transcranial Doppler sonography, and digital subtraction angiography. Although symptomatic vasospasm affects 20% to 30% of patients with aneurysmal SAH, not all patients with angiographic vasospasm manifest clinical symptoms, and the symptoms can be nonspecific. Also, patients do not always have both clinical and imaging findings of
vasospasm. Due to these limitations, more accurate and reliable methods to detect cerebral vasospasm are being investigated.

Brain Tumors
The current standard for tumor grading is a histopathologic assessment of tissue. Limitations of histologic assessment include sampling error due to regional heterogeneity and interobserver variation. These limitations can result in inaccurate classification and grading of gliomas. Because malignant brain tumors are characterized by neovascularity and increased angiogenic activity, perfusion imaging has been proposed as a method to assess tumor grade and prognosis. Also, perfusion imaging can be repeated and may help to assess the evolution of tumors and the treatment response. Traditionally, perfusion imaging of brain tumors has been performed with MRI, which can estimate tumor blood volume, blood flow, and permeability. More recently, CTP imaging has been investigated for glioma grading. Potential advantages, compared with magnetic resonance perfusion, include the wider availability, faster scanning times, and lower cost. CTP imaging may also be used to distinguish recurrent tumor from radiation necrosis.

Summary
Computed tomography perfusion (CTP) imaging provides an assessment of cerebral blood flow that may help identify ischemic regions of the brain. This technology is proposed to aid treatment decisions in patients being evaluated for acute ischemic stroke, subarachnoid hemorrhage, cerebral vasospasm, brain tumors, and head trauma.

Acute Stroke
For individuals who have acute stroke who are being evaluated for thrombolysis who receive CTP imaging, the evidence includes a systematic review with meta-analysis, a randomized controlled trial (RCT), and cohort studies. The relevant outcomes are overall survival (OS), test accuracy, symptoms, morbid events, and functional outcomes. One potential area of benefit is greater individualization of therapy for acute stroke by better defining at-risk ischemic areas that may benefit from thrombolysis. Evidence from nonrandomized comparative studies has suggested that outcomes after thrombolysis are better in patients who have target mismatch on perfusion imaging than in patients without target mismatch and that patients with target mismatch treated after a three-hour time window have outcomes similar to patients treated within three hours. However, the therapeutic changes that would be associated with identifying specific target mismatch pattern on CTP are not well-defined. Additionally, although available evidence from the RCT suggests some modest benefit for acute stroke patients who receive CTP or magnetic resonance imaging and receive alteplase up to nine hours post-stroke, the overall net health outcome is unclear because there was also a lack of significant benefit on the secondary outcome of functional improvement and a trend toward increased risk of symptomatic intracranial hemorrhage and there were important limitations in relevance and potential limitations in statistical power. Therefore, RCTs are needed to determine with greater certainty whether a strategy employing CTP imaging improves health outcomes compared with traditional strategies for the treatment of acute stroke. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have acute anterior large-vessel stroke who are being evaluated for mechanical embolectomy who receive CTP imaging, the evidence includes RCTs and cohort studies. The relevant outcomes are OS, test accuracy, symptoms, morbid events, and functional outcomes. CTP is one of the several approaches used in acute stroke to define viable ischemic tissue better and therefore identify patients who might benefit from mechanical endovascular intervention. Alternative methods of patient selection for mechanical embolectomy have included time from stroke onset, multiphase computed tomography angiography, or Alberta Stroke Program Early CT Score. Three RCTs showed improved outcomes with mechanical embolectomy when patients were selected based on CTP results within 6 hours, at 6 to 16 hours, and at 6 to 24 hours. The evidence is sufficient to quantitatively determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have acute stroke who are being evaluated for prognosis who receive CTP imaging, the evidence includes retrospective analyses of large randomized trials. The relevant outcomes are OS,
test accuracy, symptoms, morbid events, and functional outcomes. Retrospective analysis of data from the MR CLEAN and DUST trials have found that the ischemic core detected on CTP imaging was predictive of functional outcomes. However, analysis of data from the DUST study found no improvement in a prediction model when CTP imaging was added to a basic model that used only patient characteristics and non-contrast computed tomography. The evidence is insufficient to determine the effects of the technology on health outcomes.

Subarachnoid Hemorrhage

For individuals who have SAH and cerebral vasospasm who receive CTP imaging, the evidence includes a systematic review with meta-analysis and a cohort study. The relevant outcomes are OS, test accuracy, symptoms, morbid events, and functional outcomes. CTP imaging is being evaluated for the diagnosis of vasospasm and delayed cerebral ischemia following aneurysmal SAH. One prospective study showed a qualitative measure of cerebral blood flow to have 93% accuracy for the detection of delayed cerebral ischemia, with lower accuracy for cerebral blood volume. Prospective trials are needed to determine whether CTP imaging in patients with aneurysmal SAH leads to the early identification of patients at high-risk for vasospasm or delayed cerebral ischemia, alters treatment decisions, and improves health outcomes. The evidence is insufficient to determine the effects of the technology on health outcomes.

Brain Tumors

For individuals who have brain tumors who receive CTP imaging, the evidence includes studies on diagnostic accuracy. The relevant outcomes are test accuracy, symptoms, morbid events, and functional outcomes. For indications such as brain tumors and head trauma, the data on CTP imaging is limited. One study assessed the diagnostic accuracy of CTP imaging to differentiate high-grade from low-grade gliomas. Prospective studies in an appropriate population of patients are needed to evaluatethe sensitivity and specificity of CTP glioma grading, with a histopathologic assessment of tumors as the independent reference standard. One prospective study performed a receiver operating characteristic curve analysis to evaluate the diagnostic accuracy of volume perfusion computed tomography. This is the first report using volume perfusion computed tomography to differentiate gliomas; therefore, replication of these findings in an independent sample of patients is needed as well as clarification of the clinical utility of this information. Studies showing the consistency in the thresholds used are needed as are studies showing improvement in health outcomes with CTP imaging. No recent reports on the use of CTP imaging for the evaluation of brain tumors have been identified. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/2018</td>
<td>Clarified coding information.</td>
</tr>
<tr>
<td>10/2017</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>10/2017</td>
<td>Clarified coding information.</td>
</tr>
<tr>
<td>11/2016</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>10/2016</td>
<td>Clarified coding information.</td>
</tr>
<tr>
<td>11/2015</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>10/2014</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>1/2012</td>
<td>BCBSA National medical policy review.</td>
</tr>
</tbody>
</table>
Information Pertaining to All Blue Cross Blue Shield Medical Policies

Click on any of the following terms to access the relevant information:

Medical Policy Terms of Use
Managed Care Guidelines
Indemnity/PPO Guidelines
Clinical Exception Process
Medical Technology Assessment Guidelines

References

