Medical Policy
Scintimammography and Gamma Imaging of the Breast and Axilla

Table of Contents
- Policy: Commercial
- Policy: Medicare
- Authorization Information
- Coding Information
- Description
- Policy History
- Information Pertaining to All Policies
- References

Policy Number: 494
BCBSA Reference Number: 6.01.18
NCD/LCD: N/A

Related Policies
None

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity
Medicare HMO Blue℠ and Medicare PPO Blue℠ Members

Scintimammography, breast-specific gamma imaging (BSGI), and molecular breast imaging (MBI) are INVESTIGATIONAL in all applications, including, but not limited to their use as an adjunct to mammography or in staging the axillary lymph nodes.

Use of gamma detection following radiopharmaceutical administration for localization of sentinel lymph nodes in patients with breast cancer may be considered MEDICALLY NECESSARY.

Prior Authorization Information
Pre-service approval is required for all inpatient services for all products.
See below for situations where prior authorization may be required or may not be required for outpatient services.
Yes indicates that prior authorization is required.
No indicates that prior authorization is not required.
N/A indicates that this service is primarily performed in an inpatient setting.

<table>
<thead>
<tr>
<th>Outpatient</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Managed Care (HMO and POS)</td>
<td>No</td>
</tr>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>No</td>
</tr>
<tr>
<td>Medicare HMO Blue℠</td>
<td>No</td>
</tr>
<tr>
<td>Medicare PPO Blue℠</td>
<td>No</td>
</tr>
</tbody>
</table>
CPT Codes / HCPCS Codes / ICD Codes
Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following codes are included below for informational purposes only; this is not an all-inclusive list.

The above medical necessity criteria MUST be met for the following codes to be covered for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue:

CPT Codes

<table>
<thead>
<tr>
<th>CPT codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>78800</td>
<td>Radiopharmaceutical localization of tumor or distribution of radiopharmaceutical agent(s); limited area</td>
</tr>
<tr>
<td>78801</td>
<td>Radiopharmaceutical localization of tumor or distribution of radiopharmaceutical agent(s); multiple areas</td>
</tr>
</tbody>
</table>

HCPCS Codes

<table>
<thead>
<tr>
<th>HCPCS codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A9500</td>
<td>Technetium tc-99m sestamibi, diagnostic, per study dose</td>
</tr>
</tbody>
</table>

The following HCPCS code is considered investigational for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue:

HCPCS Codes

<table>
<thead>
<tr>
<th>HCPCS codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S8080</td>
<td>Scintimammography (radioimmunoscintigraphy of the breast), unilateral, including supply of radiopharmaceutical</td>
</tr>
</tbody>
</table>

Description

Mammography is the main screening modality for breast cancer, despite its limitations in terms of less than ideal sensitivity and specificity. Limitations of mammography are a particular issue for women at high risk of breast cancer, for whom cancer risk exceeds the inconvenience of more frequent screening, starting at a younger age, with more frequent false-positive results. Furthermore, the sensitivity of mammography is lower in women with radiographically dense breasts, which is more common among younger women. The clinical utility of adjunctive screening tests is primarily in the evaluation of women with inconclusive results on mammography. A biopsy is generally performed on a breast lesion if imaging cannot rule out malignancy with certainty. Therefore, adjunctive tests will be most useful in women with inconclusive mammograms if they have a high negative predictive value (NPV), and can preclude the need for biopsy. Additional imaging for asymptomatic women who have dense breasts and negative mammograms has been suggested, but the best approach is subject to debate (see TEC Special Report1).

Scintimammography is a diagnostic modality using radiopharmaceuticals to detect breast tumors. After intravenous injection of a radiopharmaceutical, the breast is evaluated using planar imaging. Scintimammography is performed with the patient lying prone and the camera positioned laterally, which
increases the distance between the breast and the camera. Special camera positioning to include the axilla may be included when the area of interest is evaluation for axillary metastases.

Scintimammography using conventional imaging modalities has relatively poor sensitivity in detecting smaller lesions (eg, <15 mm), because of the relatively poor resolution of conventional gamma cameras in imaging the breast.

Breast-specific gamma imaging (BSGI) and molecular breast imaging (MBI) were developed to address this issue. Breast-specific gamma cameras acquire images while the patient is seated in a position similar to that in mammography and the breast is lightly compressed. Detector heads are immediately next to the breast, increasing resolution, and images can be compared with mammographic images. BSGI and MBI differ primarily in the number and type of detectors used (eg, multicrystal arrays of cesium iodide or sodium iodide, or nonscintillating, semiconductor materials, such as cadmium zinc telluride). In some configurations, a detector is placed on each side of the breast and used to lightly compress it. The maximum distance between the detector and the breast is therefore from the surface to the midpoint of the breast. Much research on BSGI and MBI has been conducted at the Mayo Clinic. The radiotracer typically used is technetium Tc-99m sestamibi. MBI imaging takes approximately 40 minutes.

Preoperative lymphoscintigraphy and/or intraoperative hand-held gamma detection of sentinel lymph nodes is a method of identifying sentinel lymph nodes for biopsy after radiotracer injection. Surgical removal of 1 or more sentinel lymph nodes is an alternative to full axillary lymph node dissection for staging evaluation and management of breast cancer. Several trials have compared outcomes following sentinel lymph node biopsy versus axillary lymph node dissection for managing patients with breast cancer. The National Surgical Adjuvant Breast and Bowel Project (NSABP) trial B-32 examined whether sentinel lymph node dissection (SLND) provides similar survival and regional control as full axillary lymph node dissection in the surgical staging and management of patients with clinically invasive breast cancer. This multicenter randomized controlled trial included 5611 women and observed statistically similar results for overall survival, disease-free survival, and regional control based on 8-year Kaplan-Meier estimates. Moreover, additional 3-year follow-up of morbidity after surgical node dissection revealed lower morbidity in the SLND group, including lower rates of arm swelling, numbness, tingling, and fewer early shoulder abduction deficits. A recent systematic review and meta-analysis by Ram et al (2014) reported no significant difference in overall survival (hazard ratio [HR], 0.94; 95% confidence interval [CI], 0.79 to 1.19), no significant difference in disease-free survival (HR=0.83; 95% CI, 0.60 to 1.14), and similar rates of locoregional recurrence. However, axillary node dissection was associated with significantly greater surgical morbidity (eg, wound infection, arm swelling, motor neuropathy, numbness) than sentinel node biopsy.

Radiopharmaceuticals

Scintimammography, BSGI, and MBI

The primary radiopharmaceutical used with BSGI or MBI is technetium 99m (Tc 99m) sestamibi. The product label states that Tc 99m sestamibi is “indicated for planar imaging as a second-line diagnostic drug after mammography to assist in the evaluation of breast lesions in patients with an abnormal mammogram or a palpable breast mass. Technetium Tc-99m sestamibi is not indicated for breast cancer screening, to confirm the presence or absence of malignancy, and it is not an alternative to biopsy.” Technetium TC-99m tetrofosmin (Myoview™), a gamma-emitter used in some BSGI studies, is approved by the Food and Drug Administration only for cardiac imaging.

Pre- or Intraoperative Lymphoscintigraphy and/or Hand-Held Gamma Detection of Sentinel Lymph Nodes

The primary radiopharmaceuticals used for lymphoscintigraphy include Tc 99m pertechnetate-labeled colloids and Tc 99m tilmanocept (Lymphoseek). Whereas, Tc 99m sulfur colloid may be frequently used for intraoperative injection and detection of sentinel lymph nodes using hand-held gamma detection probe.
Radiation Exposure
Scintimammography, BSGI, and MBI
The radiation dose associated with BSGI is substantial for diagnostic breast imaging modalities. According to Appropriateness Criteria from American College of Radiology (ACR), the radiation dose from BSGI is 10 to 30 mSv, which is 15 to 30 times higher than the dose from a digital mammogram.11 According to ACR, at these levels, BSGI is not indicated for breast cancer screening.

According to another study by Hruska and O'Connor (who report receiving royalties from licensed technologies by an agreement with Mayo Clinic and Gamma Medica), the effective dose from a lower “off-label” administered dose of 240-300 MBq (6.5-8 mCi) of Tc 99m sestamibi that is made feasible with newer dual-head MBI systems, is 2.0-2.5 mSv. For comparison, the effective dose (i.e., mean glandular dose) of digital mammography is estimated to be about 0.5 mSv. However, it is important to note that the dose for MBI is given to the entire body.12 The authors compared this dose with the estimated annual background radiation, which varies worldwide between 2.5 – 10 mSv and asserted that the effective dose from MBI “is considered safe for use in routine screening.”

A 2010 article calculated mean glandular doses, and from those, lifetime attributable risks (LAR) of cancer, due to film mammography, digital mammography, BSGI, and positron emission mammography (PEM).13 The author, a consultant to GE Healthcare and a member of the medical advisory boards of Koning (manufacturer of dedicated breast computed tomography [CT]) and Bracco (MR contrast agents), used group risk estimates from the Biological Effects of Ionizing Radiation VII report14 to assess the risk of radiation-induced cancer and mortality from breast imaging studies. For a patient with average-sized breasts (compressed thickness during mammography of 5.3 cm per breast), estimated LARs of cancer at age 40 were:

- 5 per 100,000 for digital mammography (breast cancer only),
- 7 per 100,000 for screen film mammography (breast cancer only),
- 55 to 82 per 100,000 for BSGI (depending on the dose of Tc 99m sestamibi), and
- 75 per 100,000 for PEM.

Corresponding LARs of cancer mortality at age 40 were:

- 1.3 per 100,000 for digital mammography (breast cancer only),
- 1.7 per 100,000 for screen film mammography (breast cancer only),
- 26 to 39 per 100,000 for BSGI, and
- 31 for 100,000 for PEM.

A major difference in the impact of radiation between mammography, on the one hand, and BSGI or PEM, on the other, is that for mammography, the substantial radiation dose is limited to the breast. With BSGI and PEM, all organs are irradiated, increasing the risks associated with BSGI and PEM.

Notes: The term molecular breast imaging is used in different ways, sometimes for any type of breast imaging involving molecular imaging, including PEM, and sometimes it is used synonymously with the term breast-specific gamma camera, as used in this review.

Use of single-photon emission computed tomography and positron emission tomography of the breast are not covered in this review.

Summary
Scintimammography, breast-specific gamma imaging (BSGI), and molecular breast imaging (MBI) all refer to the use of radiotracers with nuclear medicine imaging as a diagnostic tool for abnormalities of the breast. These tests are distinguished by use of differing gamma camera technology which may improve diagnostic performance for detecting small lesions with BSGI or MBI. BSGI uses single-head breast-specific gamma camera and a compression device; whereas, MBI uses dual-head breast-specific gamma cameras that also produce breast compression. Preoperative lymphoscintigraphy and/or intraoperative hand-held gamma detection of sentinel lymph nodes is a method of identifying sentinel lymph nodes for biopsy after radiotracer injection. Surgical removal of 1 or more sentinel lymph nodes is an alternative to full axillary lymph node dissection for staging evaluation and management of breast cancer.
Scintimammography, Breast-Specific Gamma Imaging, and Molecular Breast Imaging

For individuals who have dense breasts or high risk for breast cancer who receive scintimammography, BSGI or MBI as adjunct to mammography, the evidence includes diagnostic accuracy studies. Relevant outcomes are overall survival, disease-specific survival, test accuracy and validity, and treatment-related morbidity. There are 3 prospective studies comparing the incremental difference in diagnostic accuracy when BSGI (or MBI) is added to mammography in women at increased risk. Sensitivity was higher with combined BSGI (or MBI) and mammography, but specificity was lower. Studies of women at increased risk of breast cancer and negative mammograms found that a small number of additional cancers were detected but the recall rate was relatively high. Studies tended to include women at different risk levels (eg, women with dense breasts and those with BRCA1). Moreover, any potential benefits need to be weighed against potential risks of additional radiation exposure. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have indeterminate or suspicious breast lesions who receive scintimammography and BSGI, the evidence includes diagnostic accuracy studies. Relevant outcomes are overall survival, disease-specific survival, test accuracy and validity, and treatment-related morbidity. In the available studies, compared with biopsy, the negative predictive value (NPV) of BSGI (or MBI) varied from 83% to 94%. Given the relative ease and diagnostic accuracy of the criterion standard of biopsy, coupled with the adverse consequences of missing a breast cancer, the NPV of BSGI (or MBI) would have to be extremely high to alter treatment decisions. The evidence to date does not demonstrate this level of NPV. Moreover, the value of BSGI in evaluating indeterminate or suspicious lesions must be compared with other modalities that would be used, such as spot views for diagnostic mammography. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have breast cancer undergoing detection of residual tumor after neoadjuvant therapy who receive scintimammography and BSGI, the evidence includes diagnostic accuracy studies and a meta-analysis. Relevant outcomes are overall survival, disease-specific survival, test accuracy and validity, and treatment-related morbidity. The meta-analysis of studies evaluating the accuracy of BSGI for detecting residual tumor after neoadjuvant therapy found a pooled sensitivity of 86% and a pooled specificity of 69%, compared to histopathologic analysis. No studies were identified that compared the diagnostic accuracy of BSGI with other imaging approaches or that investigated the clinical utility of this potential application of BSGI. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have breast cancer undergoing surgical planning for breast-conserving therapy who receive scintimammography and BSGI, the evidence includes 1 retrospective observational study. Relevant outcomes are overall survival, disease-specific survival, test accuracy and validity, and treatment-related morbidity. In the retrospective study, it appeared that magnetic resonance imaging identified more patients than BSGI who were not appropriate candidates for breast-conserving therapy. Prospective comparative studies are needed. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have breast cancer undergoing detection of axillary metastases who receive scintimammography and BSGI, the evidence includes diagnostic accuracy studies and systematic reviews of diagnostic accuracy studies. Relevant outcomes are overall survival, disease-specific survival, test accuracy and validity, and treatment-related morbidity. A meta-analysis of the available diagnostic accuracy studies found that the sensitivity and specificity of BSGI is not high enough for this technology to replace the current standard practice, surgical nodal dissection. The evidence is insufficient to determine the effects of the technology on health outcomes.

Localization of Sentinel Lymph Nodes Using Radiopharmaceutical and Gamma Detection

For individuals who have breast cancer undergoing sentinel lymph node biopsy for detection of axillary metastases who receive radiopharmaceutical and gamma detection for localization of sentinel lymph nodes, the evidence includes 3 studies and a meta-analysis. Relevant outcomes are overall survival, disease-specific survival, test accuracy and validity, and treatment-related morbidity. A meta-analysis and
3 additional studies have provided evidence that diagnostic performance using radiopharmaceutical and gamma detection for localization of sentinel lymph nodes yield high success rates in identifying sentinel lymph nodes and trend toward better detection rates using radiopharmaceutical compared to alternative methods (eg, using only blue dye). The evidence has indicated that sentinel lymph node biopsy provides similar long-term outcomes as full axillary lymph node dissection for control of breast cancer and offers more favorable early results with reduced arm swelling and better quality of life. The evidence is sufficient to determine qualitatively that the technology results in a meaningful improvement in the net health outcome.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/2015</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>7/2014</td>
<td>Updated Coding section with ICD10 procedure and diagnosis codes, effective 10/2015.</td>
</tr>
<tr>
<td>11/2009</td>
<td>BCBSA National medical policy review. No changes to policy statements.</td>
</tr>
<tr>
<td>9/2008</td>
<td>BCBSA National medical policy review. No changes to policy statements.</td>
</tr>
<tr>
<td>8/2007</td>
<td>BCBSA National medical policy review. No changes to policy statements.</td>
</tr>
</tbody>
</table>

Information Pertaining to All Blue Cross Blue Shield Medical Policies

Click on any of the following terms to access the relevant information:

- [Medical Policy Terms of Use](#)
- [Managed Care Guidelines](#)
- [Indemnity/PPO Guidelines](#)
References

