Medical Policy
Genetic Testing for Alzheimer Disease

Table of Contents
- Policy: Commercial
- Coding Information
- Information Pertaining to All Policies
- Policy: Medicare
- Description
- References
- Authorization Information
- Policy History

Policy Number: 580
BCBSA Reference Number: 2.04.13
NCD/LCD: Local Coverage Determination (LCD): Molecular Pathology Procedures (L35000)

Related Policies
Cerebrospinal Fluid and Urinary Biomarkers of Alzheimer Disease, #581
Positron Emission Tomography (PET) Brain Imaging, #903

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity

Targeted genetic testing for a known familial variant in the presenilin genes (PSEN) or amyloid-beta precursor protein (APP) gene associated with autosomal dominant early-onset Alzheimer disease may be considered MEDICALLY NECESSARY in an asymptomatic individual to determine future risk of disease when the following criteria are met:
- The individual has a close relative (ie, first- or second-degree relative) with a known familial variant associated with autosomal dominant early-onset Alzheimer disease AND
- Results of testing will inform reproductive decision making.

Genetic testing for variants in presenilin genes (PSEN) or amyloid-beta precursor protein (APP) gene associated with autosomal dominant Alzheimer disease may be considered MEDICALLY NECESSARY in an asymptomatic individual to determine future risk of disease when the following criteria are met:
- The individual has a family history of dementia consistent with autosomal dominant Alzheimer disease for whom the genetic status of the affected family members is unavailable AND
- Results of testing will inform reproductive decision making.

Genetic testing for the risk assessment of Alzheimer disease in asymptomatic individuals is considered INVESTIGATIONAL in all other situations. Genetic testing includes, but is not limited to, testing for the apolipoprotein E ε4 allele (APOE) or triggering receptor expressed on myeloid cells 2 (TREM2).
Medicare HMO BlueSM and Medicare PPO BlueSM Members

Medical necessity criteria and coding guidance for Medicare Advantage members living in Massachusetts can be found through the link below.

Local Coverage Determination (LCD): Molecular Pathology Procedures (L35000)

For medical necessity criteria and coding guidance for Medicare Advantage members living outside of Massachusetts, please see the Centers for Medicare and Medicaid Services website for information regarding your specific jurisdiction at https://www.cms.gov.

Prior Authorization Information

Pre-service approval is required for all inpatient services for all products. See below for situations where prior authorization may be required or may not be required. Yes indicates that prior authorization is required. No indicates that prior authorization is not required. N/A indicates that this service is primarily performed in an inpatient setting.

<table>
<thead>
<tr>
<th>Commercial Managed Care (HMO and POS)</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>No</td>
</tr>
<tr>
<td>Medicare HMO BlueSM</td>
<td>No</td>
</tr>
<tr>
<td>Medicare PPO BlueSM</td>
<td>No</td>
</tr>
</tbody>
</table>

CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following codes are included below for informational purposes only; this is not an all-inclusive list.

The above medical necessity criteria MUST be met for the following codes to be covered for Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity:

CPT Codes

<table>
<thead>
<tr>
<th>CPT codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>81401</td>
<td>Molecular pathology procedure, Level 2 (eg, 2-10 SNPs, 1 methylated variant, or 1</td>
</tr>
<tr>
<td></td>
<td>somatic variant [typically using nonsequencing target variant analysis], or detection of a dynamic mutation disorder/triplet repeat)</td>
</tr>
<tr>
<td>81405</td>
<td>Molecular pathology procedure, Level 6 (eg, analysis of 6-10 exons by DNA sequence analysis, mutation scanning or duplication/deletion variants of 11-25 exons, regionally targeted cytogenomic array analysis)</td>
</tr>
<tr>
<td>81406</td>
<td>Molecular pathology procedure, Level 7 (eg, analysis of 11-25 exons by DNA sequence analysis, mutation scanning or duplication/deletion variants of 26-50 exons, cytogenomic array analysis for neoplasia)</td>
</tr>
</tbody>
</table>

The following HCPCS codes are considered investigational for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue:
HCPCS Codes

<table>
<thead>
<tr>
<th>HCPCS codes</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3852</td>
<td>DNA analysis for APOE epsilon 4 allele for susceptibility to Alzheimer's disease</td>
</tr>
</tbody>
</table>

Description

ALZHEIMER DISEASE

Alzheimer disease (AD) is commonly associated with a family history; 40% of patients with AD have at least 1 other afflicted first-degree relative. Numerous genes have been associated with late-onset AD, while variants in chromosomes 1, 14, and 21 have been associated with early-onset familial AD.¹

Genetic Variants

Individuals with early-onset familial AD (ie, before age 65 years but as early as 30 years) form a small subset of AD patients. AD within families of these patients may show an autosomal dominant pattern of inheritance. Pathogenic variants in 3 genes have been identified in affected families: the amyloid-beta precursor protein (APP) gene, presenilin 1 (PSEN1) gene, and presenilin 2 (PSEN2) gene. APP and PSEN1 variants have 100% penetrance absent death from other causes, while PSEN2 has 95% penetrance. A variety of variants within these genes has been associated with AD; variants in PSEN1 appear to be the most common. While only 3% to 5% of all patients with AD have early-onset disease, pathogenic variants have been identified in 70% or more of these patients. Identifiable genetic variants are, therefore, rare causes of AD.

Testing for the apolipoprotein ε4 allele (APOE*E4) among patients with late-onset AD and for APP, PSEN1, or PSEN2 pathogenic variants in the rare patient with early-onset AD have been investigated as an aid in diagnosis of patients presenting with symptoms suggestive of AD, or as a technique for risk assessment in asymptomatic patients with a family history of AD. Pathogenic in PSEN1 and PSEN2 are specific for AD; APP variants are also found in cerebral hemorrhagic amyloidosis of the Dutch type, a disease in which dementia and brain amyloid plaques are uncommon.

The APOE lipoprotein is a carrier of cholesterol produced in the liver and brain glial cells. The APOE gene has 3 alleles—ε2, 3, and 4—with the ε3 allele being the most common. Individuals carry 2 APOE alleles. The presence of at least one ε4 allele is associated with a 1.2- to 3-fold increased risk of AD, depending on the ethnic group. Among those homozygous for epsilon 4 (~2% of the population), the risk of AD is higher than for those heterozygous for ε4. Mean age of onset of AD is about age 68 years for ε4 homozygotes, about 77 years for heterozygotes, and about 85 years for those with no ε4 alleles. About half of patients with sporadic AD carry an ε4 allele. However, not all patients with the allele develop AD. The ε4 allele represents a risk factor for AD rather than a disease-associated variant. In the absence of APOE testing, first-degree relatives of an individual with sporadic or familial AD are estimated to have a 2- to 4-fold greater risk of developing AD than the general population.² There is evidence of possible interactions between ε4 alleles, other risk factors for AD (eg, risk factors for cerebrovascular disease such as smoking, hypertension, hypercholesterolemia, diabetes³), and a higher risk of developing AD. However, it is not clear that all risk factors have been taken into account in such studies, including the presence of variants in other genes that may increase the risk of AD.

Recent studies have identified rs75932628-T, a rare functional substitution for R47H on the triggering receptor expressed on myeloid cells 2 (TREM2), as a heterozygous risk variant for late-onset AD.⁴,⁵ On chromosome 6p21.1, at position 47 (R47H), the T allele of rs75932628 encodes a histidine substitute for arginine in the gene that encodes TREM2.

TREM2 is highly expressed in the brain and is known to have a role in regulating inflammation and phagocytosis. TREM2 may serve a protective role in the brain by suppressing inflammation and clearing it of cell debris, amyloids, and toxic products. A decrease in the function of TREM2 would allow inflammation in the brain to increase and may be a factor in the development of AD. The effect size of the TREM2 variant confers a risk of AD that is similar to the APOE*E4 allele, although it occurs less frequently.
Diagnosis

The diagnosis of AD is divided into 3 categories: possible, probable, and definite AD. A diagnosis of definite AD requires postmortem confirmation of AD pathology, documenting the presence of extracellular Beta-amyloid plaques and intraneuronal neurofibrillary tangles in the cerebral cortex. As a result, a diagnosis of definite AD cannot be made during life, and the diagnosis of probable or possible AD is made on clinical grounds. Probable AD dementia is diagnosed clinically when the patient meets core clinical criteria for dementia and has a typical clinical course for AD. Criteria for diagnosis of probable AD have been developed by the National Institute on Aging and the Alzheimer’s Association. These criteria require evidence of a specific pattern of cognitive impairment, a typical clinical course, and exclusion of other potential etiologies, as follows:

- Cognitive impairment
 - Cognitive impairment established by history from patient and a knowledgeable informant, plus objective assessment by bedside mental status examination or neuropsychological testing
 - Cognitive impairment involving a minimum of 2 of the following domains:
 - Impaired ability to acquire and remember new information
 - Impaired reasoning and handling of complex tasks, poor judgment
 - Impaired visuospatial abilities
 - Impaired language functions
 - Changes in personality, behavior, or comportment
 - Initial and most prominent cognitive deficits are one of the following:
 - Amnestic presentation
 - Nonamnestic presentations, either a language presentation with prominent word-finding deficits; a visuospatial presentation with visual cognitive defects; or a dysexecutive presentation with prominent impairment of reasoning, judgment, and/or problem solving.

- Clinical course
 - Insidious onset
 - Clear-cut history of worsening over time
 - Interference with ability to function at work or usual activities
 - Decline from previous level of functioning and performing

- Exclusion of other disorders
 - Cognitive decline not explained by delirium or major psychiatric disorder
 - No evidence of other active neurologic disease, including substantial cerebrovascular disease or dementia with Lewy bodies.
 - Lack of prominent features of variant frontotemporal dementia or primary progressive aphasia.
 - No medication use with substantial effects on cognition.

A diagnosis of possible AD dementia is made when the patient meets most of the AD criteria, but has an atypical course or an etiologically mixed presentation. This may consist of an atypical onset (eg, sudden onset) or atypical progression. A diagnosis of possible AD is also made when there is another potentially causative systemic or neurologic disorder that is not thought to be the primary etiology of dementia.

Mild cognitive impairment (MCI) is a precursor of AD in many instances. MCI may be diagnosed when there is a change in cognition, but not sufficient impairment for the diagnosis of dementia. Features of MCI are evidence of impairment in 1 or more cognitive domains and preservation of independence in functional abilities. In some patients, MCI may be a predementia phase of AD. Patients with MCI may undergo ancillary testing (eg, neuroimaging, laboratory studies, neuropsychological assessment) to rule out vascular, traumatic, and medical causes of cognitive decline and to evaluate genetic factors.

Biomarker evidence has been integrated into the diagnostic criteria for probable and possible AD for use in research settings. Other diagnostic tests for AD include cerebrospinal fluid (CSF) levels of tau protein or APP, as well as positron emission tomography (PET) amyloid imaging. The CSF tests are considered separately in policy #581. PET amyloid imaging is considered in policy #903.
Summary
Alzheimer disease (AD) is the most common cause of dementia in elderly patients. For late-onset AD, there is a component of risk that runs in families, suggesting the contribution of genetic factors. Early onset AD is much less common but can occur in nonelderly individuals. Early-onset AD has a stronger component of family risk, with clustering in families, thus suggesting an inherited genetic disease-causing variant.

For individuals who are asymptomatic and at risk for developing late-onset AD who receive genetic testing, the evidence includes studies on gene associations, test accuracy, and effects on health outcomes. Relevant outcomes are test accuracy and validity, change in disease status, health status measures, and quality of life. Many genes, including apolipoprotein E (APOE), CR1, BIN1, PICALM, and TREM2, are associated with late-onset AD. However, the sensitivity and specificity of genetic testing for indicating which individuals will progress to AD is low, and numerous other factors can affect progression. Overall, genetic testing has not been shown to add value to the diagnosis of AD made clinically. The current lack of effective methods to prevent the onset of AD or to target AD treatments based on genetic characteristics limits the clinical benefit for genetic testing. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who are asymptomatic, at risk for developing early-onset, autosomal dominant AD, and have a known familial variant who receive targeted genetic testing for a known familial variant, the evidence includes studies on gene associations and test accuracy. Relevant outcomes are test accuracy and validity, change in disease status, change in reproductive decision making, health status measures, and quality of life. Variants in the presenilin 1 and 2 (PSEN1 and PSEN2) and amyloid-beta precursor protein (APP) genes are known to cause early-onset AD in an autosomal dominant pattern with almost complete penetrance. The clinical validity for autosomal dominant early-onset AD will be nearly certain when a familial pathogenic variant has previously been identified. Outside the reproductive setting when used for prognosis or prediction, there is insufficient evidence to draw conclusions on the benefits of genetic testing for pathogenic variants. Testing a prospective parent, when performed in conjunction with genetic counseling, provides more accurate information to guide reproductive planning than family history alone. Therefore, clinical utility for the purposes of reproductive decision making has been demonstrated for these tests. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who are asymptomatic, at risk for developing early-onset, autosomal dominant AD, and have no known familial variant who receive genetic testing, the evidence includes studies on gene associations and test accuracy. Relevant outcomes are test accuracy and validity, change in disease status, change in reproductive decision making, health status measures, and quality of life. Variants in the PSEN1, PSEN2, and APP genes are known to cause early-onset AD in an autosomal dominant pattern with almost complete penetrance. The clinical validity for autosomal dominant early-onset AD will be reasonably certain when a variant found in the database of pathogenic PSEN1, PSEN2, and APP variants is identified. Outside the reproductive setting when used for prognosis or prediction, there is insufficient evidence to draw conclusions on the benefits of genetic testing for pathogenic variants. Testing a prospective parent, when performed in conjunction with genetic counseling, provides more accurate information to guide reproductive planning than family history alone. Therefore, clinical utility for the purposes of reproductive decision making has been demonstrated for these tests. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/2016</td>
<td>Genetic testing for Alzheimer disease in individuals with dementia is considered investigational. Effective 5/1/2016.</td>
</tr>
<tr>
<td>12/2015</td>
<td>BCBSA National medical policy review.</td>
</tr>
</tbody>
</table>
Diagnosis” replaced with “in asymptomatic individuals” in policy statement. Familial” removed from title. Added coding language. 12/1/2015

7/2015 Local Coverage Determination (LCD): Molecular Pathology Procedures (L34506) added.

1/2015 Clarified coding information.

Information Pertaining to All Blue Cross Blue Shield Medical Policies
Click on any of the following terms to access the relevant information:
 Medical Policy Terms of Use
 Managed Care Guidelines
 Indemnity/PPO Guidelines
 Clinical Exception Process
 Medical Technology Assessment Guidelines

References