Medical Policy

Computer-Assisted Navigation for Orthopedic Procedure

Table of Contents
- Policy: Commercial
- Policy: Medicare
- Authorization Information
- Coding Information
- Description
- Policy History
- Information Pertaining to All Policies
- References

Policy Number: 594
BCBSA Reference Number: 7.01.96
NCD/LCD: Local Coverage Determination (LCD): Category III CPT® Codes (L33392) (A56195)

Related Policies
None

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity

Computer-assisted surgery for orthopedic procedures of the pelvis and appendicular skeleton is considered INVESTIGATIONAL.

Medicare HMO BlueSM and Medicare PPO BlueSM Members

This is not a covered service.

Medical necessity criteria and coding guidance for Medicare Advantage members living in Massachusetts can be found through the link below.

Local Coverage Determinations (LCDs) for National Government Services, Inc.

Local Coverage Determination (LCD): Category III CPT® Codes (L33392) (A56195)

Note: To review the specific LCD, please remember to click “accept” on the CMS licensing agreement at the bottom of the CMS webpage.

For medical necessity criteria and coding guidance for Medicare Advantage members living outside of Massachusetts, please see the Centers for Medicare and Medicaid Services website at https://www.cms.gov for information regarding your specific jurisdiction.

Prior Authorization Information
Inpatient
For services described in this policy, precertification/preauthorization is required for all products if the procedure is performed inpatient.

Outpatient
For services described in this policy, see below for products where prior authorization might be required if the procedure is performed outpatient.

<table>
<thead>
<tr>
<th>Product</th>
<th>Coverage Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Managed Care (HMO and POS)</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Medicare HMO BlueSM</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Medicare PPO BlueSM</td>
<td>This is not a covered service.</td>
</tr>
</tbody>
</table>

CPT Codes / HCPCS Codes / ICD Codes
Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

CPT Codes

<table>
<thead>
<tr>
<th>CPT codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>20985</td>
<td>Computer-assisted surgical navigational procedure for musculoskeletal procedures; image-less</td>
</tr>
<tr>
<td>0054T</td>
<td>Computer-assisted musculoskeletal surgical navigational orthopedic procedure, with image guidance based on fluoroscopic images</td>
</tr>
<tr>
<td>0055T</td>
<td>Computer-assisted musculoskeletal surgical navigational orthopedic procedure, with image guidance based on CT/MRI images</td>
</tr>
</tbody>
</table>

Description

Implant Alignment for Knee Arthroplasty
For total knee arthroscopy, malalignment is commonly defined as a variation of more than 3° from the targeted position. Proper implant alignment is believed to be an important factor for minimizing long-term wear, the risk of osteolysis, and loosening of the prosthesis.

Computer-Assisted Navigation
The goal of computer-assisted navigation is to increase surgical accuracy and reduce the chance of malposition.

In addition to reducing the risk of substantial malalignment, computer assisted navigation may improve soft tissue balance and patellar tracking. Computer assisted navigation is also being investigated for surgical procedures with limited visibility such as placement of the acetabular cup in total hip arthroplasty, resection of pelvic tumors, and minimally invasive orthopedic procedures. Other potential uses of computer assisted navigation for surgical procedures of the appendicular skeleton include screw placement for fixation of femoral neck fractures, high tibial osteotomy, and tunnel alignment during the reconstruction of the anterior cruciate ligament.

Computer assisted navigation devices may be image-based or non-image-based. Image-based devices use preoperative computed tomography scans and operative fluoroscopy to direct implant positioning. Newer non-image-based devices use information obtained in the operating room, typically with infrared probes. For total knee arthroscopy, specific anatomic reference points are made by fixing signaling transducers with pins into the femur and tibia. Signal-emitting cameras (eg, infrared) detect the reflected signals and transmit the data to a dedicated computer. During the surgery, multiple surface points are taken from the distal femoral surfaces, tibial plateaus, and medial and lateral epicondyles. The femoral
head center is typically calculated by kinematic methods that involve the movement of the thigh through a series of circular arcs, with the computer producing a 3-dimensional model that includes the mechanical, transepicondylar, and tibial rotational axes. Computer assisted navigation systems direct the positioning of the cutting blocks and placement of the prosthetic implants based on the digitized surface points and model of the bones in space. The accuracy of each step of the operation (cutting block placement, saw cut accuracy, seating of the implants) can be verified, thereby allowing adjustments to be made during surgery.

Navigation involves 3 steps: data acquisition, registration, and tracking.

Data Acquisition
Data can be acquired in 3 ways: fluoroscopically, guided by computed tomography scan or magnetic resonance imaging, or guided by imageless systems. These data are then used for registration and tracking.

Registration
Registration refers to the ability to relate images (ie, radiographs, computed tomography scans, magnetic resonance imaging, or patients’ 3D anatomy) to the anatomic position in the surgical field. Registration techniques may require the placement of pins or “fiduciary markers” in the target bone. A surface-matching technique can also be used in which the shapes of the bone surface model generated from preoperative images are matched to surface data points collected during surgery.

Tracking
Tracking refers to the sensors and measurement devices that can provide feedback during surgery regarding the orientation and relative position of tools to bone anatomy. For example, optical or electromagnetic trackers can be attached to regular surgical tools, which then provide real-time information of the position and orientation of tool alignment concerning the bony anatomy of interest.

VERASENSE (OrthoSense) is a single-use device that replaces the standard plastic tibial trial spacer used in total knee arthroscopy. The device contains microprocessor sensors that quantify load and contact position of the femur on the tibia after resections have been made. The wireless sensors send the data to a graphic user interface that depicts the load. The device is intended to provide quantitative data on the alignment of the implant and soft tissue balancing in place of intraoperative “feel.”

iASSIST (Zimmer) is an accelerometer-based alignment system with a user interface built into disposable electronic pods that attach onto the femoral and tibial alignment and resection guides. For the tibia, the alignment guide is fixed between the tibial spines and a claw on the malleoli. The relation between the electronic pod of the digitizer and the bone reference is registered by moving the limb into abduction, adduction, and neutral position. Once the information has been registered, the digitizer is removed, and the registration data are transferred to the electronic pod on the cutting guide. The cutting guide can be adjusted for varus/valgus alignment and tibial slope. A similar process is used for the femur. The pods use the wireless exchange of data and display the alignment information to the surgeon within the surgical field. A computer controller must also be present in the operating room.

Due to the lack of any recent studies on pelvic tumor resection, these sections of the Rationale were removed from this evidence review in 2016.

Summary
Computer-assisted navigation in orthopedic procedures describes the use of computer-enabled tracking systems to facilitate alignment in a variety of surgical procedures, including fixation of fractures, ligament reconstruction, osteotomy, tumor resection, preparation of the bone for joint arthroplasty, and verification of the intended implant placement.

For individuals who are undergoing orthopedic surgery for trauma or fracture and receive computer-assisted navigation, the evidence includes one retrospective clinical trial, reviews, and in vitro studies. Relevant outcomes are symptoms, morbid events, and functional outcomes. Functional outcomes were
not included in the clinical trial, although it did note fewer complications with computer-assisted navigation versus conventional methods. The evidence is insufficient to determine the effects of the technology on net health outcomes.

For individuals who are undergoing ligament reconstruction and receive computer-assisted navigation, the evidence includes a systematic review of 5 randomized controlled trials (RCTs) of computer-assisted navigation versus conventional surgery for anterior and posterior cruciate ligament. Relevant outcomes are symptoms, morbid events, and functional outcomes. Trial results showed no consistent improvement of tunnel placement with computer-assisted navigation, and no trials looked at functional outcomes or need for revision surgery with computer-assisted navigation. The evidence is insufficient to determine the effects of the technology on net health outcomes.

For individuals who are undergoing hip arthroplasty and periacetabular osteotomy and receive computer-assisted navigation, the evidence includes older RCTs, a systematic review, and comparison studies. Relevant outcomes are symptoms, morbid events, and functional outcomes. Evidence on the relative benefits of computer-assisted navigation with conventional or minimally invasive total hip arthroscopy is inconsistent, and more recent RCTs are lacking. The evidence is insufficient to determine the effects of the technology on net health outcomes.

For individuals who are undergoing total knee arthroplasty and receive computer-assisted navigation, the evidence includes RCTs, systematic reviews of RCTs, and comparative studies. Relevant outcomes are symptoms, morbid events, and functional outcomes. The main difference found between total knee arthroplasty with computer-assisted navigation and total knee arthroscopy without computer-assisted navigation is increased surgical time with computer-assisted navigation. Few differences in clinical and functional outcomes were seen at up to 10 years post-procedure. The evidence is insufficient to determine the effects of the technology on net health outcomes.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/2017</td>
<td>BCBSA National medical policy review. Title changed. New references added. 3/1/2017</td>
</tr>
<tr>
<td>8/2015</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>9/2014</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>10/2013</td>
<td>New references from BCBSA National medical policy.</td>
</tr>
<tr>
<td>1/1/2012</td>
<td>New policy, effective 01/01/2012, describing ongoing non-coverage.</td>
</tr>
</tbody>
</table>

Information Pertaining to All Blue Cross Blue Shield Medical Policies

Medical Policy Terms of Use
Managed Care Guidelines
Indemnity/PPO Guidelines
Clinical Exception Process
Medical Technology Assessment Guidelines

References

