Medical Policy

Genetic Testing for Dilated Cardiomyopathy

Table of Contents
• Policy: Commercial
• Policy: Medicare
• Authorization Information
• Coding Information
• Description
• Information Pertaining to All Policies
• Policy History
• References

Policy Number: 601
BCBSA Reference Number: 2.04.114
NCD/LCD: Local Coverage Determination (LCD): Molecular Pathology Procedures (L35000)

Related Policies
• Genetic Testing for Predisposition to Inherited Hypertrophic Cardiomyopathy, #909
• Genetic Testing for Cardiac Channelopathies, #982
• General Approach to Evaluating the Utility of Genetic Panels, #734

Policy

Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity

Genetic testing for dilated cardiomyopathy is considered INVESTIGATIONAL in all situations.

Medicare HMO BlueSM and Medicare PPO BlueSM Members

Medical necessity criteria and coding guidance for Medicare Advantage members living in Massachusetts can be found through the link below.

Local Coverage Determination (LCD): Molecular Pathology Procedures (L35000)

For medical necessity criteria and coding guidance for Medicare Advantage members living outside of Massachusetts, please see the Centers for Medicare and Medicaid Services website for information regarding your specific jurisdiction at https://www.cms.gov.

Prior Authorization Information
Pre-service approval is required for all inpatient services for all products. See below for situations where prior authorization may be required or may not be required.
Yes indicates that prior authorization is required.
No indicates that prior authorization is not required.
N/A indicates this service is primarily performed in an inpatient setting.
**Outpatient**

| Commercial Managed Care (HMO and POS) | This is not a covered service. |
| Commercial PPO and Indemnity         | This is not a covered service. |
| Medicare HMO BlueSM                   | No                           |
| Medicare PPO BlueSM                   | No                           |

**CPT Codes / HCPCS Codes / ICD Codes**

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

**CPT Codes**

<table>
<thead>
<tr>
<th>CPT codes</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>81403</td>
<td>Molecular pathology procedure, Level 4 (eg, analysis of single exon by DNA sequence analysis, analysis of &gt;10 amplicons using multiplex PCR in 2 or more independent reactions, mutation scanning or duplication/deletion variants of 2-5 exons)</td>
</tr>
<tr>
<td>81405</td>
<td>Molecular pathology procedure, Level 6 (eg, analysis of 6-10 exons by DNA sequence analysis, mutation scanning or duplication/deletion variants of 11-25 exons, regionally targeted cytogenomic array analysis)</td>
</tr>
<tr>
<td>81406</td>
<td>Molecular pathology procedure, Level 7 (eg, analysis of 11-25 exons by DNA sequence analysis, mutation scanning or duplication/deletion variants of 26-50 exons, cytogenomic array analysis for neoplasia)</td>
</tr>
<tr>
<td>81407</td>
<td>Molecular pathology procedure, Level 8 (eg, analysis of 26-50 exons by DNA sequence analysis, mutation scanning or duplication/deletion variants of &gt;50 exons, sequence analysis of multiple genes on one platform)</td>
</tr>
</tbody>
</table>

**Description**

**DILATED CARDIOMYOPATHY**

Dilated cardiomyopathy (DCM) is defined as the presence of left ventricular enlargement and dilatation in conjunction with significant systolic dysfunction. DCM has an estimated prevalence of 1 in 2700 in the United States. The age of onset for DCM is variable, ranging from infancy to the eighth decade, with most individuals developing symptoms in the fourth through sixth decades.

Primary clinical manifestations of DCM are heart failure and arrhythmias. Symptoms of heart failure, such as dyspnea on exertion and peripheral edema, are the most common presentation of DCM. These symptoms are generally gradual in onset and slowly progressive over time. Progressive myocardial dysfunction also may lead to electrical instability and arrhythmias. Symptoms of arrhythmias may include light-headedness, syncope, or sudden cardiac arrest.

Many underlying conditions can cause DCM, including:

- Ischemic coronary artery disease
- Toxins
- Metabolic conditions
- Endocrine disorders
- Inflammatory and infectious diseases
- Infiltrative disorders
- Tachycardia-mediated cardiomyopathy.

Therefore, when a patient presents with DCM, a workup is performed to identify underlying causes, especially those treatable. The standard workup consists of clinical exam, blood pressure monitoring,
electrocardiography (ECG), echocardiography, and workup for coronary artery disease as warranted by risk factors. In many cases, a definite underlying cause is not identified. Extensive workup including cardiac magnetic resonance imaging, exercise testing, right-sided catheterization with biopsy, and 24-hour ECG monitoring will uncover only a small number of additional etiologies for DCM. Approximately 35% to 40% of DCM cases are thus determined to be idiopathic after a negative workup for secondary causes. This has traditionally been termed idiopathic dilated cardiomyopathy (IDC). Clustering of IDC within families has been reported, leading to the conclusion that at least some cases of DCM have a genetic basis. Familial DCM is diagnosed when 2 closely related family members have IDC in the absence of underlying causes. Penetrance of familial DCM is variable and age-dependent, often leading to lack of appreciation of the familial component.

Treatment of DCM is similar to that for other causes of heart failure. This includes medications to reduce fluid overload and relieve strain on the heart, and lifestyle modifications such as salt restriction. Patients with clinically significant arrhythmias also may be treated with antiarrhythmic medications, pacemaker implantation, and/or an automatic implantable cardiac defibrillator (AICD). AICD placement for primary prevention also may be performed if criteria for low ejection fraction and/or other clinical symptoms are present. End-stage DCM can be treated with cardiac transplantation.

Genetic DCM
Genetic DCM has been proposed as a newer classification that includes both familial DCM and some cases of sporadic IDC. The percentage of patients with sporadic DCM that has a genetic basis is not well characterized. Most disease-associated variants are inherited in an autosomal dominant fashion, but some autosomal recessive, X-linked, and mitochondrial patterns of inheritance also are present.

In general, genotype-phenotype correlations are either not present or not well-characterized. There have been some purported correlations between certain disease-associated variants and the presence of arrhythmias. For example, patients with conduction system disease and/or a family history of sudden cardiac death may be more likely to have disease-associated variants in the LMNA, SCN5A, and DES genes. Kayvanpour et al (2017) performed a meta-analysis of genotype-phenotype associations in DCM. The analysis included 48 studies (total N=8097 patients) and found a higher prevalence of sudden cardiac death, cardiac transplantation, and ventricular arrhythmias in LMNA and PLN disease-associated variant carriers and increasing penetrance with age of DCM phenotype in subjects with TTN-truncating variants.

There may be interactions between genetic and environmental factors that lead to the clinical manifestations of DCM. A genetic variant may not in itself be sufficient to cause DCM, but may predispose to developing DCM in the presence of environmental factors such as nutritional deficiencies or viral infections. It also has been suggested that DCM genetics may be more complex than simply single-gene variants, with low-penetrance variants that are common in the population contributing to a cumulative risk of DCM that includes both genetic and environmental factors.

Genetic Testing for DCM
Approximately 30% to 40% of patients referred for genetic testing will have a disease-associated variant identified. Disease-associated variants linked to DCM have been identified in more than 40 genes of various types and locations. The most common genes involved are those that code for titin (TTN), myosin heavy chain (MYH7), troponin T (TNNT2), and alpha-tropomyosin (TPM1). These 4 genes account for approximately 30% of disease-associated variants identified in cohorts of patients with DCM. A high proportion of the identified disease-associated variants are rare, or novel, variants, thus creating challenges in assigning the pathogenicity of discovered variants. Some individuals with DCM will have more than 1 DCM-associated variant. The frequency of multiple disease-associated variants is uncertain, as is the clinical significance.

Summary
Dilated cardiomyopathy (DCM) is characterized by progressive left ventricular enlargement and systolic dysfunction, leading to clinical manifestations of heart failure. There are a variety of causes of DCM,
including genetic and nongenetic conditions. Genetic forms of DCM are heterogeneous in their molecular basis and clinical expression. Genetic testing for DCM has potential utility for confirming a diagnosis of genetic DCM and as a prognostic test in family members when familial DCM is present.

For individuals who have signs and/or symptoms of DCM who receive comprehensive genetic testing, the evidence includes case series reporting analytic and clinical validity. Relevant outcomes are overall survival, change in disease status, test accuracy and validity, symptoms, functional outcomes, quality of life, and treatment-related morbidity. The analytic validity of genetic testing for DCM is expected to be high when testing is performed by direct sequencing or next-generation sequencing. In contrast, there is a large degree of uncertainty with clinical validity. The percentage of patients with idiopathic DCM who have a genetic variant (clinical sensitivity) is relatively low, in the range of 10% to 50%. Clinical specificity of DCM-associated variants is unknown, but DCM-associated variants in the same genes have been reported in 1% to 3% of patients without DCM. Because of the suboptimal clinical validity, the accuracy of assigning variants as disease-associated or benign may also be suboptimal. The clinical utility of genetic testing for diagnosing DCM has not been demonstrated. For a patient who is diagnosed with idiopathic DCM, the presence of a DCM-associated variant will not change treatment or prognosis. The evidence is insufficient to determine the effect of the technology on health outcomes.

For individuals who are asymptomatic with a first-degree relative who has DCM and a known familial variant who receive targeted genetic testing for a known familial variant, the evidence includes case series reporting analytic and clinical validity. Relevant outcomes are test accuracy and validity, symptoms, morbid events, functional outcomes, quality of life, and treatment-related morbidity. For an individual at risk due to genetic DCM in the family, genetic testing can identify whether a familial variant has been inherited. However, it is uncertain how knowledge of a familial variant improves outcomes for an asymptomatic individual. The uncertain clinical validity of predictive testing makes it unclear whether actions taken as a result of testing will improve outcomes. Early treatment based on a genetic diagnosis is unproven. The evidence is insufficient to determine the effect of the technology on health outcomes.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/2015</td>
<td>Local Coverage Determination (LCD): Molecular Pathology Procedures (L34506) added.</td>
</tr>
<tr>
<td>3/2015</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
</tbody>
</table>

Information Pertaining to All Blue Cross Blue Shield Medical Policies

Click on any of the following terms to access the relevant information:

- Medical Policy Terms of Use
- Managed Care Guidelines
- Indemnity/PPO Guidelines
- Clinical Exception Process
- Medical Technology Assessment Guidelines

References


38. Ackerman MJ, Priori SG, Willems S, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm. Aug 2011;8(8):1308-1339. PMID 21787999


