Medical Policy

Progenitor Cell Therapy for the Treatment of Damaged Myocardium Due to Ischemia

Table of Contents
- Policy: Commercial
- Policy: Medicare
- Authorization Information
- Coding Information
- Description
- Policy History
- Information Pertaining to All Policies
- References

Policy Number: 652
BCBSA Reference Number: 2.02.18
NCD/LCD: NA

Related Policies
- Orthopedic Applications of Stem-Cell Therapy, #254
- Stem-cell Therapy for Peripheral Arterial Disease, #348

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity
Medicare HMO BlueSM and Medicare PPO BlueSM Members

Progenitor cell therapy, including but not limited to, skeletal myoblasts or hematopoietic stem cells, is INVESTIGATIONAL as a treatment of damaged myocardium.

Infusion of growth factors (i.e., granulocyte colony stimulating factor [GCSF]) is INVESTIGATIONAL as a technique to increase the numbers of circulating hematopoietic stem cells as treatment of damaged myocardium.

Prior Authorization Information

Inpatient
- For services described in this policy, precertification/preauthorization IS REQUIRED for all products if the procedure is performed inpatient.

Outpatient
- For services described in this policy, see below for products where prior authorization might be required if the procedure is performed outpatient.

<table>
<thead>
<tr>
<th></th>
<th>Outpatient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Managed Care (HMO and POS)</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>This is not a covered service.</td>
</tr>
</tbody>
</table>
Medicare HMO Blue℠ This is not a covered service.
Medicare PPO Blue℠ This is not a covered service.

CPT Codes / HCPCS Codes / ICD Codes
Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

CPT Codes
There is no specific CPT code for this service.

Description
ISCHEMIA
Ischemia is the most common cause of cardiovascular disease and myocardial damage in the developed world. Despite impressive advances in treatment, ischemic heart disease is still associated with high morbidity and mortality.

Treatment
Current treatments for ischemic heart disease seek to revascularize occluded arteries, optimize pump function, and prevent future myocardial damage. However, current treatments do not reverse existing heart muscle damage. Treatment with progenitor cells (ie, stem cells) offers potential benefits beyond those of standard medical care, including the potential for repair and/or regeneration of damaged myocardium. Potential sources of embryonic and adult donor cells include skeletal myoblasts, bone marrow cells, circulating blood-derived progenitor cells, endometrial mesenchymal stem cells, adult testis pluripotent stem cells, mesothelial cells, adipose-derived stromal cells, embryonic cells, induced pluripotent stem cells, and bone marrow mesenchymal stem cells, all of which can differentiate into cardiomyocytes and vascular endothelial cells.

The mechanism of benefit after treatment with progenitor cells is not entirely understood. Differentiation of progenitor cells into mature myocytes and engraftment of progenitor cells into areas of the damaged myocardium has been suggested in animal studies using tagged progenitor cells. However, there is controversy concerning whether injected progenitor cells engraft and differentiate into mature myocytes in humans to the degree that might result in clinical benefit. It also has been proposed that progenitor cells may improve perfusion to areas of ischemic myocardium. Basic science research has also suggested that injected stem cells secrete cytokines with antiapoptotic and proangiogenesis properties. Clinical benefit may result if these paracrine factors limit cell death from ischemia or stimulate recovery. For example, myocardial protection can occur through modulation of inflammatory and fibrogenic processes. Alternatively, paracrine factors may affect intrinsic repair mechanisms of the heart through neovascularization, cardiac metabolism, and contractility, increase in cardiomyocyte proliferation, or activation of resident stem and progenitor cells. The relative importance of these proposed paracrine actions depends on the age of the infarct (eg, cytoprotective effects in acute ischemia and cell proliferation in chronic ischemia). Investigation of the specific factors induced by administration of progenitor cells is ongoing.

There are also various potential delivery mechanisms for donor cells, encompassing a wide range of invasiveness. Donor cells can be delivered via thoracotomy and direct injection into areas of damaged myocardium. Injection of progenitor cells into the coronary circulation also is done using percutaneous, catheter-based techniques. Finally, progenitor cells may be delivered intravenously via a peripheral vein. With this approach, the cells must be able to target damaged myocardium and concentrate at the site of myocardial damage.
Adverse events of progenitor cell treatment include risks of the delivery procedure (eg, thoracotomy, percutaneous catheter-based) and risks of the donor cells themselves. Donor progenitor cells can differentiate into fibroblasts rather than myocytes. This may create a substrate for malignant ventricular arrhythmias. There also is a theoretical risk that tumors (eg, teratomas) can arise from progenitor cells, but the actual risk in humans is currently unknown.

Summary

For individuals who have acute cardiac ischemia who receive progenitor cell therapy, the evidence includes 2 phase 3 RCTs, numerous small, early-phase RCTs, and meta-analyses of these RCTs. Relevant outcomes are disease-specific survival, morbid events, functional outcomes, quality of life, and hospitalizations. Limited evidence on clinical outcomes has suggested that there may be benefits from improving left ventricular ejection fraction, reducing recurrent myocardial infarction, decreasing the need for further revascularization, and perhaps decreasing mortality, although a recent, large, individual patient data meta-analysis reported no improvement in these outcomes. No adequately powered trial has reported benefits in clinical outcomes (eg, mortality, adverse cardiac outcomes, exercise capacity, quality of life). Overall, this evidence has suggested that progenitor cell treatment may be a promising intervention, but robust data on clinical outcomes are lacking. High-quality RCTs, powered to detect differences in clinical outcomes, are needed to answer this question. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have chronic cardiac ischemia who receive progenitor cell therapy, the evidence includes 2 phase 3 RCTs with more than 100 participants, systematic reviews of smaller, early-phase RCTs, and a nonrandomized comparative trial. Relevant outcomes are disease-specific survival, morbid events, functional outcomes, quality of life, and hospitalizations. The studies included in the meta-analyses have reported only on a small number of clinical outcome events. These findings from early phase 2 trials need to be corroborated in larger phase 3 trials. A well-conducted, phase 3 RCT trial failed to demonstrate superiority of cell therapy for its primary composite outcome that included death, worsening heart failure events, and other multiple events. The nonrandomized STAR-Heart trial showed a mortality benefit as well as favorable hemodynamic effect, but a lack of randomization limits interpretation due to the concern about selection bias and differences in known and unknown prognostic variables at baseline between both arms. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have refractory angina who receive progenitor cell therapy, the evidence includes a systematic review of RCTs, phase 2 trials, and a phase 3 pivotal trial. Relevant outcomes are disease-specific survival, morbid events, functional outcomes, quality of life, and hospitalizations. The only phase 3 trial identified was terminated early and insufficiently powered to evaluate clinical outcomes. Additional larger trials are needed to determine whether progenitor cell therapy improves health outcomes in patients with refractory angina. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/2017</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>1/2017</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>8/2015</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>9/2014</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>8/2013</td>
<td>New references from BCBSA National medical policy.</td>
</tr>
</tbody>
</table>
No changes to policy statements. |
| 2/2012 | BCBSA National medical policy review. |
No changes to policy statements.

<table>
<thead>
<tr>
<th>Date</th>
<th>Review Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/2010</td>
<td>BCBSA National medical policy review. No changes to policy statements.</td>
</tr>
<tr>
<td>9/2009</td>
<td>BCBSA National medical policy review. No changes to policy statements.</td>
</tr>
<tr>
<td>12/2008</td>
<td>BCBSA National medical policy review. No changes to policy statements.</td>
</tr>
<tr>
<td>9/2008</td>
<td>BCBSA National medical policy review. No changes to policy statements.</td>
</tr>
<tr>
<td>9/2008</td>
<td>BCBSA National medical policy review. No changes to policy statements.</td>
</tr>
<tr>
<td>10/2007</td>
<td>BCBSA National medical policy review. No changes to policy statements.</td>
</tr>
</tbody>
</table>

Information Pertaining to All Blue Cross Blue Shield Medical Policies

Click on any of the following terms to access the relevant information:

- Medical Policy Terms of Use
- Managed Care Guidelines
- Indemnity/PPO Guidelines
- Clinical Exception Process
- Medical Technology Assessment Guidelines

References

