Medical Policy
Noninvasive Fetal RHD Genotyping Using Cell-Free Fetal DNA

Table of Contents
- Policy: Commercial
- Policy: Medicare
- Authorization Information
- Coding Information
- Description
- Policy History
- Information Pertaining to All Policies
- References

Policy Number: 667
BCBSA Reference Number: 2.04.108
NCD/LCD: N/A

Related Policies
None

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Medicare HMO BlueSM and Medicare PPO BlueSM Members

Noninvasive fetal RHD genotyping using cell-free fetal DNA is considered INVESTIGATIONAL.

Prior Authorization Information
Inpatient
- For services described in this policy, precertification/preauthorization IS REQUIRED for all products if the procedure is performed inpatient.

Outpatient
- For services described in this policy, see below for products where prior authorization might be required if the procedure is performed outpatient.

<table>
<thead>
<tr>
<th>Commercial Managed Care (HMO and POS)</th>
<th>This is not a covered service.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Medicare HMO BlueSM</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Medicare PPO BlueSM</td>
<td>This is not a covered service.</td>
</tr>
</tbody>
</table>

CPT Codes / HCPCS Codes / ICD Codes
Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.
Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable. The following codes are included below for informational purposes only; this is not an all-inclusive list.

According to the policy statement above, the following CPT codes are considered investigational for the conditions listed for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue:

<table>
<thead>
<tr>
<th>CPT Codes</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>81403</td>
<td>Molecular pathology procedure, Level 4 (eg, analysis of single exon by DNA sequence analysis, analysis of >10 amplicons using multiplex PCR in 2 or more independent reactions, mutation scanning or duplication/deletion variants of 2-5 exons)</td>
</tr>
</tbody>
</table>

Description

ALLOIMMUNIZATION

Alloimmunization refers to the development of antibodies in a patient whose blood type is Rhesus D (RhD)—negative and who is exposed to RhD-positive red blood cells (RBCs). This most commonly occurs from fetal-placental hemorrhage and entry of fetal blood cells into maternal circulation. The management of an RhD-negative pregnant patient who is not alloimmunized and is carrying a known RhD-positive fetus, or if fetal RhD status is unknown, involves administration of RhD immunoglobulin at standardized during pregnancy to prevent formation of anti-RhD antibodies. If the patient is already alloimmunized, monitoring the levels of anti-RhD antibody titers for the development of fetal anemia is performed. Noninvasive and invasive tests to determine fetal RhD status exist.

Rh Blood Groups

The Rh (Rhesus) system includes more than 100 antigen varieties found on RBCs. RhD is the most common and the most immunogenic. When people have the RhD antigen on their RBCs, they are considered to be RhD-positive; if their RBCs lack the antigen, they are considered to be RhD-negative. The RhD antigen is inherited in an autosomally dominant fashion, and a person may be heterozygous (Dd; ≈60% of RhD-positive people) or homozygous (DD; ≈40% of RhD-positive people). Homozygotes always pass the RhD antigen to their offspring, whereas heterozygotes have a 50% chance of passing the antigen to their offspring. A person who is RhD-negative does not have the Rh antigen. Although nomenclature refers to RhD-negative as dd, there is no small d antigen (ie, they lack the RHD gene and the corresponding RhD antigen).

RhD-negative status varies across ethnic group and is 15% in whites, 5% to 8% in blacks, and 1% to 2% in Asians and Native Americans.

In the white population, almost all RhD-negative individuals are homozygous for a deletion of the RHD gene. However, in black populations, only 18% of RhD-negative individuals are homozygous for an RHD deletion, and 66% of RhD-negative blacks have an inactive RHD pseudogene (RHDΨ). There are also numerous rare variants of the D antigen, which are recognized by weakness of expression of D and/or by absence of some of the epitopes of D. Some individuals with variant D antigens, if exposed to RhD-positive RBCs, can make antibodies to one or more epitopes of the D antigen.

RhD-negative women can have a fetus that is RhD-positive if the fetus inherits the RhD-positive antigen from the paternal father.

Causes of Alloimmunization

By 30 days of gestation, the RhD antigen is expressed on the RBC membrane, and alloimmunization can be caused when fetal RhD-positive RBCs enter maternal circulation and the RhD-negative mother develops anti-D antibodies. Once anti-D antibodies are present in a pregnant woman’s circulation, they can cross the placenta and destroy fetal RBCs.
The production of anti-D antibodies in RhD-negative women is highly variable and significantly affected by several factors, including the volume of fetomaternal hemorrhage, the degree of maternal immune response, concurrent ABO incompatibility, and fetal homozygosity vs heterozygosity for the D antigen. Therefore, although about 10% of pregnancies are RhD-incompatible, less than 20% of RhD-incompatible pregnancies actually lead to maternal alloimmunization.

Small fetomaternal hemorrhages of RhD-positive fetal RBCs into the circulation of an RhD-negative woman occurs in nearly all pregnancies, and percentages of fetomaternal hemorrhage increase as the pregnancy progresses: 7% in the first trimester, 16% in the second trimester, and 29% in the third trimester, with the greatest risk of RhD alloimmunization occurring at birth (15%-50%). Transplacental hemorrhage accounts for almost all cases of maternal RhD alloimmunization.

Fetomaternal hemorrhage can also be associated with miscarriage, pregnancy termination, ectopic pregnancy, invasive in utero procedures (eg, amniocentesis), in utero fetal death, maternal abdominal trauma, antepartum maternal hemorrhage, and external cephalic version. Other causes of alloimmunization include inadvertent transfusion of RhD-positive blood and RhD-mismatched allogeneic hematopoietic cell transplantation.

Consequences of Alloimmunization

Immunoglobulin (Ig) G antibody–mediated hemolysis of fetal RBCs, known as hemolytic disease of the fetus and newborn, varies in severity and manifestations. The anemia can range from mild to severe, with associated hyperbilirubinemia and jaundice. In severe cases, hemolysis may lead to extramedullary hematopoiesis and reticuloendothelial clearance of fetal RBCs, which may result in hepatosplenomegaly, decreased liver function, hypoproteinemia, ascites, and anasarca. When accompanied by high-output cardiac failure and pericardial effusion, this condition is known as hydrops fetalis, which without intervention, is often fatal. Intensive neonatal care, including emergent exchange transfusion, is required.

Cases of hemolysis in the newborn that do not result in fetal hydrops can still lead to kernicterus, a neurologic condition observed in infants with severe hyperbilirubinemia due to the deposition of unconjugated bilirubin in the brain. Symptoms that manifest several days after delivery can include poor feeding, inactivity, loss of the Moro reflex, bulging fontanelle, and seizures. The 10% of infants who survive may develop spastic choreoathetosis, deafness, and/or mental retardation.

Hemolytic disease in the fetus or newborn was once a major contributor to perinatal morbidity and mortality. However, the widespread adoption of antenatal and postpartum use of RhD immunoglobulin in developed countries resulted in a major decrease in the frequency of this disease. In developing countries without prophylaxis programs, stillbirth occurs in 14% of affected pregnancies, and 50% of pregnancy survivors either die in the neonatal period or develop cerebral injury.

Prevention of Alloimmunization

There are 4 RhD immunoglobulin products available in the United States, all of which undergo micropore filtration to eliminate viral transmission. To date, no reported cases of viral infection related to RhD immunoglobulin administration have been reported in the United States. Theoretically, the Creutzfeldt-Jakob disease agent could be transmitted by use of RhD immunoglobulin. Local adverse reactions may occur, including redness, swelling, and mild pain at the site of injection, and hypersensitivity reactions.

The American College of Obstetricians and Gynecologists and the American Association of Blood Banks have recommended the first dose of Rh(D) immunoglobulin (eg, RhoGAM) be given at 28 weeks of gestation (or earlier if there’s been an invasive event), followed by a postpartum dose given within 72 hours of delivery.
Diagnosis of Alloimmunization
The diagnosis of alloimmunization is based on detection of anti-RhD antibodies in the maternal serum. The most common test for determining antibodies in serum is the indirect Coombs test. Maternal serum is incubated with known RhD-positive RBCs. Any anti-RhD antibody present in the maternal serum will adhere to the RBCs. The RBCs are then washed and suspended in Coombs serum, which is antihuman globulin. RBCs coated with maternal anti-RhD will agglutinate, which is referred to as a positive indirect Coombs test. The indirect Coombs titer is the value used to direct management of pregnant alloimmunized women.

Management of Alloimmunization During Pregnancy
A patient’s first alloimmunized pregnancy involves minimal fetal or neonatal disease. Subsequent pregnancies are associated with more severe degrees of fetal anemia. Treatment of an alloimmunized pregnancy requires monitoring maternal anti-D antibody titers and serial ultrasound assessment of middle cerebral artery peak systolic velocity of the fetus.

If severe fetal anemia is present near term, delivery is performed. If severe anemia is detected remote from term, intrauterine fetal blood transfusions may be performed.

Determining Fetal RhD Status
The American College of Obstetrician and Gynecologists has recommended that all pregnant women be tested during their first prenatal visit for ABO blood group typing and RhD type, and be screened for the presence of anti-RBC antibodies. These laboratory tests should be repeated for each subsequent pregnancy. The American Association of Blood Banks has also recommended that antibody screening be repeated before administration of anti-D immunoglobulin at 28 weeks of gestation, postpartum, and at the time of any event during pregnancy.

If the mother is determined to be RhD-negative, the paternal RhD status should also be determined at the initial management of a pregnancy. If paternity is certain and the father is RhD-negative, the fetus will be RhD-negative, and further assessment and intervention are unnecessary. If the father is RhD-positive, he can be either homozygous or heterozygous for the D allele. If homozygous for the D allele (ie, D/D), then the fetus is RhD-positive. If the paternal genotype is heterozygous for Rh status or is unknown, determination of the RhD status of the fetus is the next step to assess the RhD compatibility of the pregnancy (first or any subsequent pregnancy).

Invasive and noninvasive testing methods to determine the RhD status of a fetus are available. These procedures use polymerase chain reaction assays to assess the fetal cellular elements in amniotic fluid by amniocentesis or chorionic villus sampling (CVS). Although CVS can be performed earlier in a pregnancy, amniocentesis is preferred because CVS is associated with disruption of the villi and the potential for larger fetomaternal hemorrhage and worsening alloimmunization if the fetus if RhD-positive. The sensitivity and specificity of fetal RHD genotyping by polymerase chain reaction are reported as 98.7% and 100%, respectively, with positive and negative predictive values of 100% and 96.9%, respectively.

Noninvasive testing involves molecular analysis of cell-free fetal DNA (cffDNA) in the maternal plasma or serum. Lo et al (1998) showed that about 3% of cffDNA in the plasma of first trimester pregnant women is of fetal origin, with this percentage rising to 6% in the third trimester. Fetal DNA cannot be separated from maternal DNA, but if the pregnant woman is RhD-negative, the presence of specific exons of the RHD gene, which are not normally present in the circulation of an RhD-negative patient, predicts an RhD-positive fetus. Cell-free fetal DNA has been proposed as a noninvasive alternative to obtaining fetal tissue by invasive methods, which are associated with a risk of miscarriage.

Noninvasive testing involves molecular analysis of cell-free fetal DNA (cffDNA) in the maternal plasma or serum. Lo et al (1998) showed that about 3% of cffDNA in the plasma of first trimester pregnant women is of fetal origin, with this percentage rising to 6% in the third trimester. Fetal DNA cannot be separated from maternal DNA, but if the pregnant woman is RhD-negative, the presence of specific exons of the RHD gene, which are not normally present in the circulation of an RhD-negative patient, predicts an RhD-positive fetus. Cell-free fetal DNA has been proposed as a noninvasive alternative to obtaining fetal tissue by invasive methods, which are associated with a risk of miscarriage.

The large quantity of maternal DNA compared with fetal DNA in the maternal circulation complicates the inclusion of satisfactory internal controls to test for successful amplification of fetal DNA. Therefore, reactions to detect Y chromosome-linked gene(s) can be included in the test, which will be positive when the fetus is a male. When Y chromosome-linked genes are not detected, tests for variants may be performed to determine whether the result is derived from fetal not maternal DNA.
Cell-free fetal DNA testing to determine the fetal RHD genotype is standard of care in many European countries.

Summary
For individuals who are pregnant and have RhD-negative blood type who receive noninvasive RHD genotyping of the fetus using cell-free DNA from maternal plasma, the evidence includes a meta-analysis and additional prospective studies (for clinical validity) and no direct evidence for clinical utility. Relevant outcomes are test validity, morbid events, medication use, and treatment-related morbidity. Clinical validity studies have demonstrated that the sensitivity and specificity of the test are high; however, the false-negative test rate, which is low, is not zero, potentially leading to alloimmunization of the RhD-negative mothers in these cases. It is uncertain whether RHD genotyping using cell-free fetal DNA will lead to improved health outcomes. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/2017</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>12/2014</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
</tbody>
</table>

Information Pertaining to All Blue Cross Blue Shield Medical Policies
Click on any of the following terms to access the relevant information:
Medical Policy Terms of Use
Managed Care Guidelines
Indemnity/PPO Guidelines
Clinical Exception Process
Medical Technology Assessment Guidelines

References

