Medical Policy
Genetic Testing for Mental Health Conditions

Table of Contents
- Policy: Commercial
- Policy: Medicare
- Authorization Information
- Coding Information
- Description
- Policy History
- Information Pertaining to All Policies
- References

Policy Number: 669
BCBSA Reference Number: 2.04.110
NCD/LCD: Local Coverage Determination (LCD): MolDX: GeneSight® Assay for Refractory Depression (L35633)

Related Policies
- Cytochrome p450 Genotyping #256
- Genetic Testing for Inherited Thrombophilia #802

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity

Genetic testing for variants associated with mental health disorders is considered INVESTIGATIONAL in all situations, including but not limited to the following:

- To confirm a diagnosis of a mental health disorder in an affected individual.
- To predict future risk of a mental health disorder in an asymptomatic individual.
- In an affected individual to inform the selection or dose of medications used to treat mental health disorders.

Genetic testing panels for mental health disorders, including but not limited to the Genecept Assay, STA²R test, the GeneSight Psychotropic panel, the Proove Opioid Risk assay, and the Mental Health DNA Insight panel, are considered INVESTIGATIONAL for all indications.

Medicare HMO Blue℠ and Medicare PPO Blue℠ Members

Medical necessity criteria and coding guidance for Medicare Advantage members living in Massachusetts can be found through the link below.

Local Coverage Determination (LCD): MolDX: GeneSight® Assay for Refractory Depression (L35633)
For medical necessity criteria and coding guidance for Medicare Advantage members living outside of Massachusetts, please see the Centers for Medicare and Medicaid Services website for information regarding your specific jurisdiction at https://www.cms.gov.

Prior Authorization Information
Pre-service approval is required for all inpatient services for all products. See below for situations where prior authorization may be required or may not be required. Yes indicates that prior authorization is required. No indicates that prior authorization is not required. N/A indicates that this service is primarily performed in an inpatient setting.

<table>
<thead>
<tr>
<th>Outpatient</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Managed Care (HMO and POS)</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Medicare HMO BlueSM</td>
<td>No</td>
</tr>
<tr>
<td>Medicare PPO BlueSM</td>
<td>No</td>
</tr>
</tbody>
</table>

CPT Codes / HCPCS Codes / ICD Codes
Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following codes are included below for informational purposes only; this is not an all-inclusive list.

According to the policy statement above, the following CPT codes are considered investigational for the conditions listed for Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity:

<table>
<thead>
<tr>
<th>CPT codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>81291</td>
<td>MTHFR (5,10-methylenetetrahydrofolate reductase) (eg, hereditary hypercoagulability) gene analysis, common variants (eg, 677T, 1298C)</td>
</tr>
<tr>
<td>81401</td>
<td>Molecular pathology procedure, Level 2 (eg, 2-10 SNPs, 1 methylated variant, or 1 somatic variant [typically using nonsequencing target variant analysis], or detection of a dynamic mutation disorder/triplet repeat)</td>
</tr>
</tbody>
</table>

Description
MENTAL HEALTH DISORDERS
Mental health disorders cover a wide range of clinical phenotypes and are generally classified by symptomatology in systems such as the classification outlined in the American Psychiatric Association's *Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5)*. In addition to counseling and other forms of behavioral treatment, treatment commonly involves 1 or more psychotropic medications aimed at alleviating symptoms of the disorder. Although there are a wide variety of effective medications, treatment of mental health disorders is characterized by relatively high rates of inadequate response. This often necessitates numerous trials of individual agents and combinations of medications to achieve optimal response.
Knowledge of the physiologic and genetic underpinnings of mental health disorders is advancing rapidly and may substantially alter the way in which these disorders are classified and treated. Genetic testing could potentially be used in several ways, including stratifying patients’ risks of developing a particular disorder, aiding diagnosis, targeting medication therapy, and optimally dosing medication.

Genes Relevant to Mental Health Disorders

Mental health disorders encompass a wide range of conditions: the *DSM-5* includes more than 300 disorders. However, currently available genetic testing for mental health disorders is primarily related to 2 clinical situations:

1. Risk-stratifying patients for one of several mental health conditions, including schizophrenia and related psychotic disorders, bipolar and related disorders, depressive disorders, obsessive-compulsive and related disorders, and substance-related and addictive disorders.
2. Predicting patients’ response to, dose requirement for, or adverse effects from one of several medications (or classes of medications) used to treat mental health conditions, including: typical and atypical antipsychotic agents, selective serotonin reuptake inhibitors (SSRIs) and serotonin norepinephrine reuptake inhibitors, and medications used to treat addiction, such as disulfiram.

Panels of genetic tests have been developed and proposed for use in the latter clinical situation. Genes implicated in prediction of mental health disorders or their response to treatment and included in currently available panels are outlined in the following sections.

Serotonin Transporter
The serotonin transporter gene (*SLC6A4*) is responsible for coding the protein that clears serotonin metabolites (5-HT) from the synaptic spaces in the central nervous system (CNS). This protein is the principal target for many of the SSRIs. By inhibiting the activity of the SLC6A4 protein, the concentration of 5-HT in the synaptic spaces is increased. A common polymorphism in this gene consists of insertion or deletion of 44 base pairs in the serotonin-transporter-linked polymorphic region. These polymorphisms have been studied in relation to a variety of psychiatric and nonpsychiatric conditions, including anxiety, obsessive compulsive disorder, and response to SSRIs.

Serotonin Receptor
The serotonin receptor gene (*5HT2C*) codes for 1 of at least 6 subtypes of the serotonin receptor that is involved in the release of dopamine and norepinephrine. These receptors play a role in controlling mood, motor function, appetite, and endocrine secretion. Alterations in functional status have been associated with affective disorders such as anxiety and depression. Certain antidepressants (eg, mirtazapine, nefazodone) are direct antagonists of this receptor. There is also interest in developing agonists of the 5HT2C receptor as treatment for obesity and schizophrenia, but such medications are not commercially available at present.

The serotonin receptor gene (*5HT2A*) codes for another subtype of the serotonin receptor. Variations in the *5HT2A* gene have been associated with susceptibility to schizophrenia and obsessive-compulsive disorder and response to certain antidepressants.

Sulfotransferase Family 4A, Member 1
The sulfotransferase family 4A, member 1, gene (*SULT4A1*) encodes a protein that is involved in the metabolism of monoamines, particularly dopamine and norepinephrine.

Dopamine Receptors
The *DRD2* gene codes for a subtype of the dopamine receptor, called the D2 subtype. The activity of this receptor is modulated by G proteins, which inhibit adenyl cyclase. These receptors are involved in a variety of physiologic functions related to motor and endocrine processes. The D2 receptor is the target of certain antipsychotic drugs. Mutations in this gene have been associated with schizophrenia and myoclonic dystonia. Polymorphisms of the *DRD2* gene have been associated with addictive behaviors (eg, smoking, alcoholism).
The *DRD1* gene encodes another G protein-coupled receptor that interacts with dopamine to mediate some behavioral responses and to modulate D2 receptor-mediated events. Polymorphisms of the *DRD1* gene have been associated with nicotine dependence and schizophrenia.

The *DRD4* gene encodes a dopamine receptor with a similar structure: *DRD4* polymorphisms have been associated with risk-taking behavior and attention-deficit/hyperactivity disorder.

Dopamine Transporter

Similar to the *SCL6A4* gene, the dopamine transporter gene (*DAT1 or SLC6A3*) encodes a transporter that mediates the active reuptake of dopamine from the synaptic spaces in the CNS. Polymorphisms in this gene are associated with Parkinson disease, Tourette syndrome, and addictive behaviors.

Dopamine Beta Hydroxylase

The dopamine beta-hydroxylase (*DBH*) gene encodes a protein that catalyzes the hydroxylase of dopamine to norepinephrine. It is primarily located in the adrenal medulla and in postganglionic sympathetic neurons. Variation in the *DBH* gene has been investigated as a modulator of psychotic symptoms in psychiatric disorders and in tobacco addiction.

Gated Calcium Channel

The gated calcium channel gene (*CACNA1C*) is responsible for coding of a protein that controls activation of voltage-sensitive calcium channels. Receptors for this protein are found widely throughout the body, including skeletal muscle, cardiac muscle, and in neurons in the CNS. In the brain, different modes of calcium entry into neurons determine which signaling pathways are activated, thus modulating excitatory cellular mechanisms. Associations of polymorphisms of this gene have been most frequently studied in relation to cardiac disorders. Specific polymorphisms have been associated with Brugada syndrome and a subtype of long QT syndrome (Timothy syndrome).

Ankyrin 3

Ankyrins are proteins that are components of the cell membrane and interconnect with the spectrin-based cell membrane skeleton. The *ANK3* gene codes for the protein Ankyrin G, which has a role in regulating sodium channels in neurons. Alterations of this gene have been associated with cardiac arrhythmias (e.g., Brugada syndrome). Polymorphisms of this gene have also been associated with bipolar disorder, cyclothymic depression, and schizophrenia.

Catechol O-Methyltransferase

The catechol O-methyltransferase gene (*COMT*) codes for the COMT enzyme that is responsible for the metabolism of the catecholamine neurotransmitters, dopamine, epinephrine, and norepinephrine. COMT inhibitors (e.g., entacapone) are currently used in the treatment of Parkinson disease. A polymorphism of the *COMT* gene, the Val158Met polymorphism, has been associated with alterations in emotional processing and executive function and has also been implicated in increasing susceptibility to schizophrenia.

Methylenetetrahydrofolate Reductase

The methylenetetrahydrofolate reductase gene (*MTHFR*) is a widely studied gene that codes for the protein that converts folic acid to methylfolate. Methylfolate is a precursor for the synthesis of norepinephrine, dopamine, and serotonin. It is a key step in the metabolism of homocysteine to methionine, and deficiency of MTHFR protein can cause hyperhomocysteinemia and homocystinuria. The MTHFR protein also plays a major role in epigenetics, through methylation of somatic genes. A number of polymorphisms have been identified that result in altered activity of the MTHFR enzyme. These polymorphisms have been associated with a wide variety of clinical disorders, including vascular disease, neural tube defects, dementia, colon cancer, and leukemia.
γ-Aminobutyric Acid A Receptor
The γ-aminobutyric acid A (GABA) receptor gene encodes a ligand-gated chloride channel composed of 5 subunits that responds to GABA, a major inhibitory neurotransmitter. Mutations in the GABA receptor have been associated with several epilepsy syndromes.

μ and κ-Opioid Receptors
OPRM1 encodes the μ-opioid receptor, which is a G protein-coupled receptor that is the primary site of action for commonly used opioids, including morphine, heroin, fentanyl, and methadone. Polymorphisms in the OPRM1 gene have been associated with differences in dose requirements for opioids. OPKR1 encodes the κ-opioid receptor, which binds the natural ligand dynorphin and a number of synthetic ligands.

Cytochrome P450 Genes
CYP2D6, CYP2C19, CYP3A4, CYP1A2, CYP2C9, and CYP2B6 code for hepatic enzymes that are members of the cytochrome P450 family and are responsible for the metabolism of a wide variety of medications, including many psychotropic agents. For each of these genes, polymorphisms exist that affect the rate of enzyme activity and, therefore, the rapidity of elimination of drugs and their metabolites. Based on the presence or absence of polymorphisms, patients can be classified as rapid metabolizers, intermediate metabolizers, and poor metabolizers.

P-Glycoprotein Gene
The ABCB1 gene, also known as the MDR1 gene, encodes P-glycoprotein, which is involved in the transport of most antidepressants across the blood-brain barrier. ABCB1 polymorphisms have been associated with differential response to antidepressants that are substrates of P-glycoprotein, but not to antidepressants that are not P-glycoprotein substrates.

UDP-Glucuronosyltransferase Gene
The UDP-glucuronosyltransferase gene, UGT1A4, encodes an enzyme of the glucuronidation pathway that transforms small lipophilic molecules into water-soluble molecules. Polymorphisms in the UGT1A4 gene have been associated with variation in drug metabolism, including some drugs used for mental health disorders.

Commercially Available Genetic Tests
Several test labs market either panels of tests or individual tests relevant for mental health disorders. The specific tests included in each panel are summarized in Table 1.

The Genecept™ Assay (Genomind, Chalfont, PA) is a genetic panel test that includes genetic mutations and/or polymorphisms associated with psychiatric disorders and/or response to psychotropic medication. The test consists of a group of individual genes, and the results are reported separately for each gene. There is no summary score derived from this test. The test is intended as a decision aid for treatment interventions, particularly in the choice and dosing of medications. However, guidance on specific actions that should be taken following specific test results is vague. Interpretation of the results and any management changes as a result of the test are left to the judgment of the treating clinician.

The STA²R (SureGene Test for Antipsychotic and Antidepressant Response; SureGene, Louisville, KY) is a genetic panel that provides information about medication response, adverse event likelihood, and drug metabolism based on the results of the genetic panel. According to the manufacturer’s website, the test is recommended for initial medication selection, for patients who have poor efficacy, tolerability, or satisfaction with existing medications, and in cases of severe treatment failure.1

GeneSight® Psychotropic (Assurex Health, Mason, OH) is a genetic panel that provides information about genes that may affect a patient’s response to antidepressant and antipsychotic pharmacotherapy. According to the manufacturer’s website, following testing, the treating provider receives a report with the most common medications for the patient’s diagnosed condition categorized by cautionary level based on
the results of the genetic panel, along with a report of the patient’s genetic variants. Details are not provided about the algorithm the manufacturer uses to generate risk levels.

The Proove Opioid Risk panel (Proove Biosciences, Irvine, CA) is a panel to evaluate genes involved in the development of substance abuse or dependence and in response to medical therapy for substance abuse or dependence.

Pathway Genomics (San Diego, CA) offers the Mental Health DNA Insight™ panel, which is a single-nucleotide polymorphism-based array test that evaluates a number of genes associated with the metabolism and efficacy of psychiatric medications.

AltheaDx (San Diego, CA) offers a number of IDgenetix-branded tests, which include several panels focusing on polymorphisms that affect medication pharmacokinetics for a variety of disorders, including psychiatric disorders. Specific mutations included in the panel were not easily identified from the manufacturer’s website.

Table 1: Genes Included in Genetic Panels for Mental Health Disorders

<table>
<thead>
<tr>
<th>Gene</th>
<th>Polymorphisms Included in Commercially Available Test Panels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genecept Assay</td>
<td>STA®R (SureGene)</td>
</tr>
<tr>
<td>SULT4A1</td>
<td></td>
</tr>
<tr>
<td>SLC6A4 (serotonin transporter)</td>
<td></td>
</tr>
<tr>
<td>5HT2C (serotonin receptor)</td>
<td></td>
</tr>
<tr>
<td>5HT2A (serotonin receptor)</td>
<td></td>
</tr>
<tr>
<td>DRD1 (dopamine receptor)</td>
<td></td>
</tr>
<tr>
<td>DRD2 (dopamine receptor)</td>
<td></td>
</tr>
<tr>
<td>DRD4 (dopamine receptor)</td>
<td></td>
</tr>
<tr>
<td>DAT1 (dopamine transporter)</td>
<td></td>
</tr>
<tr>
<td>DBH (dopamine β-hydroxylase)</td>
<td></td>
</tr>
<tr>
<td>CACNA1C (gated calcium channel)</td>
<td></td>
</tr>
<tr>
<td>Ankyrin 3</td>
<td></td>
</tr>
<tr>
<td>COMT (catechol O-methyltransferase)</td>
<td></td>
</tr>
<tr>
<td>MTHFR</td>
<td></td>
</tr>
<tr>
<td>GABA</td>
<td></td>
</tr>
<tr>
<td>OPRK1 (κ-opioid receptor)</td>
<td></td>
</tr>
<tr>
<td>OPRM1 (μ-opioid receptor)</td>
<td></td>
</tr>
<tr>
<td>CYP450 genes</td>
<td></td>
</tr>
<tr>
<td>CYP2D6</td>
<td></td>
</tr>
<tr>
<td>CYP2C19</td>
<td></td>
</tr>
<tr>
<td>CYP3A4</td>
<td></td>
</tr>
<tr>
<td>CYP1A2</td>
<td></td>
</tr>
<tr>
<td>CYP2C9</td>
<td></td>
</tr>
<tr>
<td>P2B6</td>
<td></td>
</tr>
<tr>
<td>UGT1A4</td>
<td></td>
</tr>
<tr>
<td>ABCB1</td>
<td></td>
</tr>
<tr>
<td>MC4R</td>
<td></td>
</tr>
</tbody>
</table>
In addition, several labs offer genetic testing for individual genes, including *MTFHR* (GeneSight Rx and other laboratories), *CYP450* genes, and *SULT4A1*.

Summary

Individual genes have been shown to be associated with risk of psychiatric disorders and specific aspects of psychiatric drug treatment such as drug metabolism, treatment response, and risk of adverse effects. Commercially available testing panels include several of these genes and are intended to aid in the diagnosis and treatment of mental health disorders.

For individuals who are evaluated for diagnosis or risk of a mental health disorder who receive genetic testing for risk of that disorder, the evidence includes various observational studies (case-control, genome-wide association study) evaluating the relation between the mental health disorder of interest and candidate genes. Relevant outcomes are test accuracy and validity, other test performance measures, and changes in disease status. Most studies have evaluated the association between genotype and mental health disorders without a clinical perspective; thus diagnostic characteristics and validated risk predictions among specific clinical populations are unknown. The associations tend to be weak and would likely result in poor diagnostic characteristics. There is no clear clinical strategy for how the associations of specific genes and mental health disorders would be used to diagnose a specific patient or to manage a patient at higher risk of a specific disorder. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have a mental health disorder who are undergoing drug treatment who receive genetic testing for genes associated with medication pharmacokinetics and pharmacodynamics, the evidence includes a large number of observational studies assessing specific genes and outcomes of drug treatment, and a limited number of studies comparing outcomes for patients who have undergone genetic testing with those who have not. Relevant outcomes are symptoms, changes in disease status, morbid events, functional outcomes, health status measures, quality of life, and treatment-related morbidity. Some studies comparing patients who have undergone genetic testing to those who have not have shown that testing may be associated with differences in depression treatment outcomes. However, methodologic limitations limit the conclusions that can be drawn. Most studies are nonrandomized. One relevant RCT did not show a difference in patient outcomes. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/2016</td>
<td>BCBSA National medical policy review. Structure of the policy clarified to conform to analytic validity, clinical validity, and clinical utility structure. Policy statements unchanged. 8/1/2016</td>
</tr>
<tr>
<td>10/2014</td>
<td>BCBSA National medical policy review. Policy expanded to include other genetic testing panels; title of policy changed to Genetic Testing Panels for Mental Health Conditions. Effective 10/1/2014.</td>
</tr>
</tbody>
</table>
Information Pertaining to All Blue Cross Blue Shield Medical Policies

Click on any of the following terms to access the relevant information:
Medical Policy Terms of Use
Managed Care Guidelines
Indemnity/PPO Guidelines
Clinical Exception Process
Medical Technology Assessment Guidelines

References