Medical Policy
Genetic Testing for Li-Fraumeni Syndrome

Table of Contents
- Policy: Commercial
- Policy: Medicare
- Authorization Information
- Coding Information
- Description
- Policy History
- Information Pertaining to All Policies
- References

Policy Number: 684
BCBSA Reference Number: 2.04.101
NCD/LCD: Local Coverage Determination (LCD): Molecular Pathology Procedures (L35000)

Related Policies
None

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity

Genetic testing for TP53 may be considered MEDICALLY NECESSARY to confirm a diagnosis of Li-Fraumeni syndrome under the following conditions:

- In a patient who meets either the classic or the Chompret clinical diagnostic criteria for Li-Fraumeni syndrome, or
- In women with early-onset breast cancer (age of diagnosis <31 years).

Targeted TP53 familial variant testing may be considered MEDICALLY NECESSARY in an at-risk relative of a proband with a known TP53 pathogenic variant.

Genetic testing for a germline TP53 variant is considered NOT MEDICALLY NECESSARY for all other indications.

Medicare HMO BlueSM and Medicare PPO BlueSM Members

Medical necessity criteria and coding guidance for Medicare Advantage members living in Massachusetts can be found through the link below.

Local Coverage Determination (LCD): Molecular Pathology Procedures (L35000)

For medical necessity criteria and coding guidance for Medicare Advantage members living outside of Massachusetts, please see the Centers for Medicare and Medicaid Services website for information regarding your specific jurisdiction at https://www.cms.gov.
Prior Authorization Information
Pre-service approval is required for all inpatient services for all products. See below for situations where prior authorization may be required or may not be required for outpatient services. Yes indicates that prior authorization is required. No indicates that prior authorization is not required. N/A indicates that this service is primarily performed in an inpatient setting.

<table>
<thead>
<tr>
<th>Outpatient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Managed Care (HMO and POS)</td>
</tr>
<tr>
<td>Commercial PPO and Indemnity</td>
</tr>
<tr>
<td>Medicare HMO BlueSM</td>
</tr>
<tr>
<td>Medicare PPO BlueSM</td>
</tr>
</tbody>
</table>

CPT Codes / HCPCS Codes / ICD Codes
Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following codes are included below for informational purposes only; this is not an all-inclusive list.

The above medical necessity criteria MUST be met for the following codes to be covered for Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity:

CPT Codes

<table>
<thead>
<tr>
<th>CPT codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>81405</td>
<td>Molecular pathology procedure, Level 6 (eg, analysis of 6-10 exons by DNA sequence analysis, mutation scanning or duplication/deletion variants of 11-25 exons, regionally targeted cytogenomic array analysis)</td>
</tr>
</tbody>
</table>

Description
Li-Fraumeni syndrome (LFS) is a cancer predisposition syndrome associated with the development of several different types of tumors. The syndrome is caused by germline mutations in the TP53 gene.

Background
LFS is a cancer predisposition syndrome associated a high lifetime cumulative risk of cancer and a tendency for multiple cancers in affected individuals. The syndrome was originally described in 1969 by 2 physician-scientists, Frederick P. Li and Joseph F. Fraumeni, based on a retrospective analysis of families with aggressive soft tissue sarcomas in young siblings and their biologically related cousins.1

The tumor types that are most closely associated with LFS include soft tissue sarcomas, premenopausal breast cancer, brain tumors, and adrenal cortical carcinoma.2 These core cancers account for approximately 70% to 80% of all LFS-related tumors. There is less agreement about the noncore cancers, which account for the remaining 30% of malignancies in LFS and include a wide variety of gastrointestinal tract, genitourinary tract, lung, skin and thyroid cancers and leukemias and lymphomas.2

Individuals with LFS are at increased risk of developing multiple primary tumors, with subsequent malignancies not all being clearly related to the treatment of the previous neoplasms. The risk of developing a second tumor has been estimated at 57% and the risk of a third malignancy, 38%.2

Individuals with LFS are at increased risk of both bone and soft tissue sarcomas. Sarcomas of various histologies account for 25% of the cancers reported in people with LFS, with the most commonly reported
sarcomas in an international database being rhabdomyosarcoma before age 5 years and osteosarcoma at any age. Women with LFS are at greatly increased risk of developing premenopausal breast cancer, with the median age of diagnosis being 33 years of age. Male breast cancer has rarely been reported in LFS families. Many different types of brain tumors have been described in LFS, including astrocytomas, glioblastomas, medulloblastomas and choroid plexus carcinomas. The median age of onset of LFS-related brain tumors is 16 years of age. Individuals with LFS are at increased risk of developing adrenal cortical carcinoma (ACC). In adults, in 1 series, it was estimated that 6% of individuals diagnosed with ACC after age 18 years have a germline TP53 mutation.

Data from M.D. Anderson Cancer Center’s long-term clinical studies of LFS showed that the risk of developing soft tissue sarcomas is greatest before the age of 10, brain cancer appears to occur early in childhood with a smaller peak in risk in the fourth to fifth decade of life, risk for osteosarcoma is highest during adolescence, and breast cancer risk among females with LFS starts to increase significantly around age 20 and continues into older adulthood.

Clinical Diagnosis
The diagnosis of LFS is based on an evolving set of clinical classification criteria, established using salient aspects of family history and tumor-related characteristics. The first formal set of criteria, the classic LFS criteria, were developed in 1988, and are the most stringent criteria used to make a clinical diagnosis of LFS.

Classic LFS is defined by the presence of all of the following criteria:
- A proband with a sarcoma before 45 years of age
- A first-degree relative with any cancer before 45 years of age
- A first- or second-degree relative with any cancer before 45 years of age or a sarcoma at any age.

Chompret et al developed criteria which were shown to have the highest positive predictive value, and which, when combined with the classic LFS criteria, provide the highest sensitivity for identifying individuals with LFS. The Chompret criteria were updated in 2009 to assist in identifying families with milder phenotypes. The Chompret criteria will also identify individuals with de novo TP53 mutations, whereas the classic LFS criteria require a family history.

Chompret Criteria
- Proband with tumor belonging to LFS tumor spectrum (eg, soft tissue sarcoma, osteosarcoma, brain tumor, premenopausal breast cancer, adrenocortical carcinoma, leukemia, lung bronchoalveolar cancer) before age 46 years AND at least 1 first- or second-degree relative with LFS tumor (except breast cancer if proband has breast cancer) before age 56 years or with multiple tumors; OR
- Proband with multiple tumors (except multiple breast tumors), 2 of which belong to LFS tumor spectrum and the first of which occurred before age 46 years; OR
- Patient with adrenocortical carcinoma (ACC) or choroid plexus tumor, irrespective of family history
- National Comprehensive Cancer Network (NCCN) guidelines recommend TP53 analysis for individuals who meet classic LFS criteria, Chompret criteria, or who have been diagnosed with early-onset breast cancer (age of diagnosis ≤35 years).

Molecular Diagnosis
LFS is associated with germline mutations in the TP53 gene (chromosome 17p13.1), which encodes for a ubiquitous transcription factor that is responsible for a complex set of regulatory functions that promote DNA repair and tumor suppression. TP53 is the only gene in which mutations are known to cause LFS, and no other inherited phenotypes are associated specifically with germline mutations involving TP53.

LFS is a highly penetrant cancer syndrome, with the risks for cancer being ~50% by age 30 years, and 90% by age 60 years. LFS is inherited in an autosomal dominant manner. De novo germline TP53 mutations (no mutation is identified in either biologic parent) are estimated to be 7% to 20%.
Approximately 95% of mutations detected in TP53 gene are sequence variants (small intragenic deletions/insertions and missense, nonsense, and splice site m0020utations). Large deletion/duplications not readily detected by sequence analysis accounts for approximately 1% of the mutations detected.2 Certain genotype-phenotype correlations have been reported in families with LFS and TP53 mutations. Genotype-phenotype correlations in LFS are predictive of the age of onset of tumor, level of risk of developing tumor, and outcome in patients with TP53 germline mutations.1,2

Management

Treatment
The evaluation for cancer in an individual diagnosed with LFS should be based on personal medical history and, to some degree, the specific pattern of cancer in the family. Women with LFS who develop breast cancer are encouraged to consider bilateral mastectomies to reduce the risk of developing a second primary breast cancer and to avoid exposure to radiation therapy. Preventive measures may include prophylactic mastectomy in women, and in all patients with a TP53 mutation, avoidance of radiation therapy, as there is some evidence to suggest that TP53 mutations confer an increased sensitivity to ionizing radiation and the possibility of radiation-induced malignancies.

Surveillance
LFS confers a high risk of multiple different types of cancer, which poses challenges for establishing a comprehensive screening regimen, and many of the cancers associated with LFS do not lend themselves to early detection. There is no international consensus on the appropriate clinical surveillance strategy in individuals with LFS, but, in general, the strategy includes physical examination, colonoscopy and breast imaging. Other protocols that are being evaluated include additional imaging techniques and biochemical assessment. NCCN has consensus-based screening guidelines.

Summary
Li-Fraumeni syndrome (LFS) is a cancer predisposition syndrome associated with the development of several types of tumors. The syndrome is caused by germline pathogenic variants in the TP53 gene. Testing for LFS pathogenic variants may be useful in confirming the diagnosis of LFS and/or evaluating genetic status in asymptomatic relatives of an index case.

For individuals with suspected LFS by clinical criteria who receive genetic testing for TP53, the evidence includes case series and cross-sectional studies. Relevant outcomes include overall survival, disease specific survival, test accuracy and validity, changes in reproductive decision making, and resource utilization. Evidence on the clinical validity of testing comes from the International Agency for Research on Cancer TP53 Database that has compiled data on 891 families with LFS. For patients with suspected LFS based on clinical criteria, the clinical sensitivity ranges from 50% to 80%. No evidence was identified on clinical specificity. In individuals with suspected LFS, a positive genetic test will establish a genetic diagnosis of LFS and facilitate the overall workup for cancer susceptibility syndrome when multiple conditions are considered. Also, the presence of a documented TP53 pathogenic variant may aid in decision making for risk-reducing (prophylactic) mastectomy. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who are asymptomatic and have a close relative with a known TP53 familial variant who receive targeted TP53 familial variant testing, the evidence includes case series and cross-sectional studies. Relevant outcomes include overall survival, disease-specific survival, test accuracy and validity, changes in reproductive decision making, and resource utilization. Evidence on the clinical validity of testing comes from the International Agency for Research on Cancer TP53 Database that has compiled data on 891 families with LFS. In asymptomatic individuals who have a close relative with a known TP53 pathogenic variant, targeted familial variant testing can confirm or exclude the presence of the familial variant with high certainty. A positive genetic test will lead to increased surveillance for LFS-associated cancers, and a negative test will eliminate the need for enhanced surveillance. Knowledge of TP53 genetic status may also inform reproductive decision making in individuals considering offspring. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.
### Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/2016</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>6/2015</td>
<td>Local Coverage Determination (LCD): Molecular Pathology Procedures (L34506) added.</td>
</tr>
<tr>
<td>10/2014</td>
<td>New policy describing medically necessary and not medically necessary indications. Effective 10/1/2014.</td>
</tr>
</tbody>
</table>

### Information Pertaining to All Blue Cross Blue Shield Medical Policies

Click on any of the following terms to access the relevant information:
- Medical Policy Terms of Use
- Managed Care Guidelines
- Indemnity/PPO Guidelines
- Clinical Exception Process
- Medical Technology Assessment Guidelines

### References