Medical Policy
Chromosomal Microarray Testing for the Evaluation of Pregnancy Loss

Table of Contents
- Policy: Commercial
- Policy: Medicare
- Authorization Information
- Coding Information
- Description
- Policy History
- Information Pertaining to All Policies
- References

Policy Number: 686
BCBSA Reference Number: 2.04.122
NCD/LCD: NA

Related Policies
- Genetic Testing for the Genetic Evaluation of Patients with Developmental Delay/Intellectual Disability or Autism Spectrum Disorder and Congenital Anomalies, #228
- Preimplantation Genetic Testing, #088
- Carrier Testing for Genetic Diseases, #666
- Invasive Prenatal (Fetal) Diagnostic Testing, #708

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Medicare HMO Blue℠ and Medicare PPO Blue℠ Members

Chromosomal microarray analysis of fetal tissue may be considered MEDICALLY NECESSARY for the evaluation of pregnancy loss in patients with indications for genetic analysis of the embryo or fetus.

Genetic testing may be indicated (if desired by parents):
- In cases of pregnancy loss at 20 weeks of gestation or earlier when there is a maternal history of recurrent miscarriage (defined as a history of 2 or more failed pregnancies); OR
- In all cases of pregnancy loss after 20 weeks of gestation.

The decision to obtain genetic testing should be made jointly between the mother or parents and the treating clinician.

This policy does not address the use of chromosomal microarray testing for preimplantation genetic diagnosis or preimplantation genetic screening, or the evaluation of suspected chromosomal abnormalities in the postnatal period.
Prior Authorization Information

Inpatient
- For services described in this policy, precertification/preauthorization **IS REQUIRED** for all products if the procedure is performed **inpatient**.

Outpatient
- For services described in this policy, see below for products where prior authorization **might be required** if the procedure is performed **outpatient**.

<table>
<thead>
<tr>
<th></th>
<th>Outpatient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Managed Care (HMO and POS)</td>
<td>Prior authorization is not required.</td>
</tr>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>Prior authorization is not required.</td>
</tr>
<tr>
<td>Medicare HMO Blue SM</td>
<td>Prior authorization is not required.</td>
</tr>
<tr>
<td>Medicare PPO Blue SM</td>
<td>Prior authorization is not required.</td>
</tr>
</tbody>
</table>

CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

CPT Codes
There is no specific CPT code for this test.

Description

PREGNANCY LOSS: ETIOLOGY AND EVALUATION

Early Pregnancy Loss
Pregnancy loss is common, occurring in at least 15% to 25% of recognized pregnancies. Most pregnancy loss occurs early in the pregnancy, most often by the end of the first trimester or early second trimester. Pregnancy loss that occurs before the 20th week of gestation is referred to as a spontaneous abortion, early pregnancy loss, or miscarriage. While a wide range of factors can lead to early pregnancy loss, genetic causes are thought to be the predominant cause: when products of conception (POC) are examined, it is estimated that 60% of early pregnancy losses are associated with chromosomal abnormalities, particularly trisomies and monosomy X. The increasing risk of trisomies with maternal age contributes to the increased risk of early pregnancy loss with increasing maternal age.

Recurrent pregnancy loss, defined by the American Society for Reproductive Medicine (ASRM) as 2 or more failed pregnancies, is less common, occurring in approximately 5% of women. Recurrent pregnancy loss may be related to cytogenetic abnormalities, particularly balanced translocations, uterine abnormalities, thrombophilias, including antiphospholipid syndrome, and metabolic or endocrinologic disorders such as uncontrolled diabetes and thyroid disease. Estimates for the frequency of various underlying causes of recurrent pregnancy loss vary widely, with ranges from 2% to 6% for cytogenetic abnormalities, 8% to 42% for antiphospholipid antibody syndrome, and 1.8% to 37.6% for uterine abnormalities. It is likely that the risk of cytogenetic abnormalities is lower in recurrent early pregnancy loss than in isolated spontaneous early pregnancy loss.

Clinicians and patients may evaluate for the cause of a single or recurrent early pregnancy loss for several reasons. The knowledge that an early pregnancy loss is secondary to a sporadic genetic abnormality may provide parents with reassurance that there was nothing that they did or did not do that contributed to the loss, although the magnitude of this benefit is difficult to quantify. For couples with recurrent pregnancy loss and evidence of a structural genetic abnormality in one of the parents, preimplantation genetic diagnosis with transfer of unaffected embryos or the use of donor gametes might
be considered for therapy. These therapies might be considered for couples with recurrent pregnancy loss without evidence of a structural genetic abnormality in one of the parents; 2012 guidelines on the management of recurrent pregnancy loss from ASRM have indicated that “treatment options should be based on whether repeated miscarriages are euploid, aneuploid, or due to an unbalanced structural rearrangement and not exclusively on the parental carrier status.” Finally, among patients found to have a potential nongenetic underlying cause of recurrent pregnancy loss, such as antiphospholipid syndrome, cytogenetic analysis of pregnancy losses could provide evidence that the miscarriages were not due to treatment failure.

Genetic testing of POC, if possible, is recommended by several reproductive health organizations. A 2012 committee opinion from ASRM has recommended that the assessment of recurrent pregnancy loss include peripheral karyotyping of the parents and indicated that karyotypic analysis of POC may be useful in the setting of ongoing therapy for recurrent pregnancy loss. The National Society of Genetic Counselors convened a multidisciplinary working group that recommended, for the genetic evaluation of couples with recurrent pregnancy loss, chromosomal analysis of fetal tissue from POC be pursued (when possible).

Late Pregnancy Loss
Fetal loss that occurs later in pregnancy, after 20 weeks of gestation, may be referred to as intrauterine fetal demise (IUFD), stillbirth, or intrauterine fetal death. In 2004, IUFD occurred in 6.2 of 1000 births in the United States, representing about 60% of perinatal mortality. In many cases, the precise cause of IUFD is unidentifiable; however, it may be related to a range of disorders, including genetic disorders in the fetus, maternal infection, coexisting maternal medical disorders (eg, diabetes, antiphospholipid antibody syndrome, heritable thrombophilias), and obstetric complications. Chromosomal or genetic abnormalities can be found in 8% to 13% of IUFD—most commonly aneuploidies. In a large 2012 series of IUFD (N=1025), cytogenic abnormalities were detected in 11.9%.

Reasons for evaluation for a cause of IUFD are similar to those for earlier pregnancy loss. Although both early and late pregnancy losses may cause grief for the mother and her family, IUFD can be particularly devastating. Information about the cause of the pregnancy loss may be important in counseling women about their recurrence risk. In low-risk women with an unexplained IUFD, the risk of recurrence is 7.8 to 10.5 of 1000 live births, but this increases to 21.8 per 1000 live births in women with a history of fetal growth restriction. Identification of a heritable genetic variant in a fetus may prompt testing in the parents; if a heritable variant is identified, parents may pursue preimplantation genetic diagnosis in future pregnancies.

CHROMOSOMAL MICROARRAY TESTING
There is interest in using alternative genetic testing methods, particularly array comparative genomic hybridization (aCGH), to detect chromosomal or other genetic abnormalities in the evaluation of miscarriages and IUFD.

Summary
For individuals who have pregnancy loss with indications for genetic analysis of the embryo or fetus who receive CMA testing of fetal tissue, the evidence includes prospective and retrospective cohort studies that report on the yield of CMA testing. Relevant outcomes are test accuracy and validity, other test performance measures, changes in reproductive decision making, morbid events, and quality of life. The available evidence has suggested that CMA testing has a high rate of concordance with standard karyotyping. For both early and late pregnancy loss, CMA is more likely to yield a result than karyotyping. Other studies have reported that CMA testing detects a substantial number of abnormalities in patients with normal karyotypes, although the precise yield is uncertain and likely varies based on gestational age.

Rates of variants of uncertain significance in CMA testing of miscarriage samples are not well characterized. Potential benefits from identifying a genetic abnormality in a miscarriage or IUFD include reducing emotional distress for families, altering additional testing undertaken to assess for other causes of pregnancy loss, and changing reproductive decision making for future pregnancies. The potential for clinical utility with CMA testing of fetal tissue in pregnancy loss is parallel to that for obtaining a karyotype.
of fetal tissue in pregnancy loss, which is recommended by a number of organizations. None of the studies identified directly demonstrated whether (or how) patient management would change based on CMA testing of the products of conception from early or late pregnancy losses, nor did they demonstrate how patient outcomes would improve. However, the available evidence suggests that, for situations in which a genetic evaluation is indicated, CMA testing would be expected to perform as well as (or better) than standard karyotyping. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/2017</td>
<td>BCBSA National medical policy review. Policy title and statement changed from “analysis” to “testing.” Policy statement otherwise unchanged. 10/1/2017</td>
</tr>
</tbody>
</table>

Information Pertaining to All Blue Cross Blue Shield Medical Policies

Click on any of the following terms to access the relevant information:

- Medical Policy Terms of Use
- Managed Care Guidelines
- Indemnity/PPO Guidelines
- Clinical Exception Process
- Medical Technology Assessment Guidelines

References

