Responsive Neurostimulation for the Treatment of Refractory Focal Epilepsy

Responsive neurostimulation may be considered MEDICALLY NECESSARY for patients with partial epilepsy who meet ALL of the following criteria:

- Are 18 years or older;
- Have a diagnosis of focal seizures with 1 or 2 well-localized seizure foci identified;
- Have an average of 3 or more disabling seizures (eg, motor focal, complex focal, or secondary generalized seizures) per month over the prior 3 months;
- Are refractory to medical therapy (have failed 2 or more appropriate antiepileptic medications at therapeutic doses);
- Are not candidates for focal resective epilepsy surgery (eg, have an epileptic focus near eloquent cerebral cortex; have bilateral temporal epilepsy); and
- Do not have contraindications* for RNS placement.

*Contraindications for responsive neurostimulation device placement include 3 or more specific seizure foci, presence of primary generalized epilepsy, or presence of a rapidly progressive neurologic disorder.

Responsive neurostimulation is considered INVESTIGATIONAL for all other indications.
• For services described in this policy, precertification/preauthorization **IS REQUIRED** if the procedure is performed inpatient.

Outpatient

• For services described in this policy, see below for situations where prior authorization might be required if the procedure is performed outpatient.

<table>
<thead>
<tr>
<th>Commercial Managed Care (HMO and POS)</th>
<th>Prior authorization is not required.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>Prior authorization is not required.</td>
</tr>
<tr>
<td>Medicare HMO BlueSM</td>
<td>Prior authorization is not required.</td>
</tr>
<tr>
<td>Medicare PPO BlueSM</td>
<td>Prior authorization is not required.</td>
</tr>
</tbody>
</table>

CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

CPT Codes

There is no specific CPT code for this procedure.

Description

Epilepsy Treatment

Medical Therapy for Seizures

Standard therapy for seizures, including focal seizures, includes treatment with one or more of various antiepileptic drugs, which include newer antiepileptic drugs, such as oxcarbazepine, lamotrigine, topiramate, gabapentin, pregabalin, levetiracetam, tiagabine, and zonisamide.\(^1\) Currently, response to antiepileptic drugs is less than ideal: one systematic review comparing newer antiepileptic drugs for refractory focal epilepsy reported an overall average responder rate in treatment groups of 34.8%.\(^1\) As a result, a substantial number of patients do not achieve good seizure control with medications alone.

Surgical Therapy for Seizures

When a discrete seizure focus can be identified, seizure control may be achieved through resection of the seizure focus (epilepsy surgery). For temporal lobe epilepsy, a randomized controlled trial has demonstrated that surgery for epilepsy was superior to prolonged medical therapy in reducing seizures associated with impaired awareness and in improving quality of life.\(^2\) Surgery for refractory focal epilepsy (excluding simple focal seizures) is associated with 5-year freedom from seizure rates of 52%, with 28% of seizure-free individuals able to discontinue antiepileptic drugs.\(^3\) Selection of appropriate patients for epilepsy surgery is important, because those with nonlesional extratemporal lobe epilepsy have worse outcomes after surgery than those with nonlesional temporal lobe epilepsy.\(^4\) Some patients are not candidates for epilepsy surgery if the seizure focus is located in an eloquent area of the brain or other region that cannot be removed without risk of significant neurologic deficit.

Neurostimulation for Neurologic Disorders

Electrical stimulation at one of several locations in the brain has been used as therapy for epilepsy, either as an adjunct to or as an alternative to medical or surgical therapy. Vagus nerve stimulation has been widely used for refractory epilepsy, following U.S. Food and Drug Administration (FDA) approval of a vagus nerve stimulation device in 1997 and 2 randomized controlled trials evaluating vagus nerve stimulation in epilepsy.\(^5\) Although the mechanism of action for vagus nerve stimulation is not fully understood, vagus nerve stimulation is thought to reduce seizure activity through activation of vagal visceral afferents with diffuse central nervous system projections, leading to a widespread effect on neuronal excitability.
Stimulation of other locations in the neuroaxis has been studied for a variety of neurologic disorders. Electrical stimulation of deep brain nuclei (deep brain stimulation) involves the use of chronic, continuous stimulation of a target. It has been most widely used in the treatment of Parkinson disease and other movement disorders and has been investigated for treating epilepsy. Deep brain stimulation of the anterior thalamic nuclei was studied in a randomized control trial, the Stimulation of the Anterior Nucleus of the Thalamus for Epilepsy trial, but deep brain stimulation is not currently approved by FDA for stimulation of the anterior thalamic nucleus. Stimulation of the cerebellar and hippocampal regions and the subthalamic, caudate, and centromedian nuclei have also been evaluated for the treatment of epilepsy.

Responsive Neurostimulation for Epilepsy
Responsive neurostimulation shares some features with deep brain stimulation but is differentiated by its use of direct cortical stimulation and by its use in both monitoring and stimulation. The responsive neurostimulation system provides stimulation in response to detection of specific epileptiform patterns, while deep brain stimulation provides continuous or intermittent stimulation at preprogrammed settings.

Development of the responsive neurostimulation system arose from observations related to the effects of cortical electrical stimulation for seizure localization. It has been observed that electrical cortical stimulation can terminate induced and spontaneous electrographic seizure activity in humans and animals. Patients with epilepsy may undergo implantation of subdural monitoring electrodes for the purposes of seizure localization, which at times have been used for neurostimulation to identify eloquent brain regions. Epileptiform discharges that occur during stimulation for localization can be stopped by a train of neighboring brief electrical stimulations.

In tandem with the recognition that cortical stimulation can stop epileptiform discharges was development of fast pre-ictal seizure prediction algorithms. These algorithms interpret electrocorticographic data from detection leads situated over the cortex. The responsive neurostimulation process thus includes electrocorticographic monitoring via cortical electrodes, analysis of data through a proprietary seizure detection algorithm, and delivery of electrical stimulation via both cortical and deep implanted electrodes in an attempt to halt a detected epileptiform discharge.

One device, the NeuroPace RNS® System, is currently approved by FDA and is commercially available.

Responsive Neurostimulation for Seizure Monitoring
Although the intent of the electrocorticography component of the responsive neurostimulation system is to provide input as a trigger for neurostimulation, it also provides continuous seizure mapping data (chronic unlimited cortical electrocorticography) that may be used by practitioners to evaluate patients’ seizures. In particular, the seizure mapping data have been used for surgical planning of patients who do not experience adequate seizure reduction with responsive neurostimulation placement. Several studies have described the use of responsive neurostimulation in evaluating seizure foci for epilepsy surgery or for identifying whether seizure foci are unilateral.

This review does not further address use of responsive neurostimulation exclusively for seizure monitoring.

Summary
Responsive neurostimulation for the treatment of epilepsy involves the use of one or more implantable electric leads that serve both a seizure detection and neurostimulation function. The device is programmed using a proprietary algorithm to recognize seizure patterns from electrocorticography output and to deliver electrical stimulation with the goal of terminating a seizure. One device, the NeuroPace RNS® System, has U.S. Food and Drug Administration (FDA) approval for the treatment of refractory focal (formerly partial) epilepsy.

For individuals who have refractory focal epilepsy who receive responsive neurostimulation, the evidence includes an industry-sponsored randomized controlled trial, which was used for FDA approval of the device.
NeuroPace RNS® System, as well as case series. Relevant outcomes are symptoms, morbid events, quality of life, and treatment-related mortality, and morbidity. The randomized controlled trial was well-designed and well-conducted; it reported that responsive neurostimulation is associated with improvements in mean seizure frequency in patients with refractory focal epilepsy, with an absolute difference in change in seizure frequency of about 20% between groups, though the percentage of treatment responders with at least a 50% reduction in seizures did not differ from sham control. Overall, the results suggested a modest reduction in seizure frequency in a subset of patients. The number of adverse events reported in the available studies is low, although the data on adverse events were limited because small study samples. Generally, patients who are candidates for responsive neurostimulation are severely debilitated and have few other treatment options, so the benefits are likely high relative to the risks. In particular, patients who are not candidates for resective epilepsy surgery and have few treatment options may benefit from responsive neurostimulation. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Consensus input from clinical vetting recommended that responsive neurostimulation is medically necessary for a subgroup of patients with refractory focal epilepsy. Therefore, responsive neurostimulation may be considered medically necessary in patients with medication-refractory focal epilepsy who are not candidates for epilepsy surgery.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/2017</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
<tr>
<td>5/2016</td>
<td>New references added from BCBSA National medical policy.</td>
</tr>
</tbody>
</table>

Information Pertaining to All Blue Cross Blue Shield Medical Policies

Click on any of the following terms to access the relevant information:
- [Medical Policy Terms of Use](#)
- [Managed Care Guidelines](#)
- [Indemnity/PPO Guidelines](#)
- [Clinical Exception Process](#)
- [Medical Technology Assessment Guidelines](#)

References