Medical Policy

Ablation Procedures for Peripheral Neuromas

Table of Contents
- Policy: Commercial
- Policy: Medicare
- Authorization Information
- Coding Information
- Description
- Policy History
- Information Pertaining to All Policies
- References

Policy Number: 719
BCBSA Reference Number: 7.01.147
NCD/LCD: N/A

Related Policies
None

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Medicare HMO BlueSM and Medicare PPO BlueSM Members

Minimally invasive ablation procedures, RFA, and cryoablation, are considered INVESTIGATIONAL for treatment of peripheral neuromas.

Prior Authorization Information
Inpatient
- For services described in this policy, precertification/preauthorization IS REQUIRED for all products if the procedure is performed inpatient.

Outpatient
- For services described in this policy, see below for products where prior authorization might be required if the procedure is performed outpatient.

<table>
<thead>
<tr>
<th>Product</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Managed Care (HMO and POS)</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Medicare HMO BlueSM</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Medicare PPO BlueSM</td>
<td>This is not a covered service.</td>
</tr>
</tbody>
</table>

CPT Codes / HCPCS Codes / ICD Codes
Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.
Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following codes are included below for informational purposes only; this is not an all-inclusive list.

According to the policy statement above, the following CPT codes are considered investigational for the conditions listed for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue:

<table>
<thead>
<tr>
<th>CPT Codes</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>64632</td>
<td>Destruction by neurolytic agent; plantar common digital nerve</td>
</tr>
<tr>
<td>64640</td>
<td>Destruction by neurolytic agent; other peripheral nerve or branch</td>
</tr>
</tbody>
</table>

Description

Neuroma

A neuroma is a pathology of a peripheral nerve that develops as part of a normal reparative process. Neuromas may develop after nerve injury or result from chronic irritation, pressure, stretch, poor repair of nerve lesions or previous neuromas, laceration, crush injury, or blunt trauma. Neuromas typically appear 6 to 10 weeks after trauma, with most presenting within 1 to 12 months after injury or surgery. They may gradually enlarge over 2 to 3 years and may or may not be painful. Pain from a neuroma may be secondary to traction on the nerve by scar tissue, compression of the sensitive nerve endings by adjacent soft tissues, ischemia of the nervous tissue, or ectopic foci of ion channels that elicit neuropathic pain. Patients may describe the pain as low-intensity dull pain or intense paroxysmal burning pain, often triggered by external stimuli such as touch or temperature. Neuroma formation has been implicated as a contributor of neuropathic pain in residual limb pain, postthoracotomy, postmastectomy, and postherniorrhaphy pain syndromes. They may coexist with phantom pain or can predispose to it.

Morton Neuroma

Morton intermetatarsal neuroma is a common and painful compression neuropathy of the common digital nerve of the foot that may also be referred to as interdigital neuroma, interdigital neuritis, and interdigital or Morton metatarsalgia. Morton neuroma is usually associated with a throbbing, burning, or shooting pain localized to the plantar aspect of the foot. It is typically located between the third and fourth metatarsal heads, although it may appear in other proximal locations. It is histologically characterized by perineural fibrosis, endoneurial edema, axonal degeneration, and local vascular proliferation. Thus, some investigators do not consider Morton neuroma to be a true neuroma; instead, they consider it to be an entrapment neuropathy occurring secondary to compression of the common digital nerve under the overlying transverse metatarsal ligament. Morton neuroma appears 10-fold more often in women than in men, with an average age at presentation of around 50 years.

Diagnosis

Although a host of imaging methods are used to diagnosis Morton neuroma, including plain radiographs, magnetic resonance imaging, and ultrasonography, objective findings are unique to this condition and are primarily used to establish a clinical diagnosis. Thus, a patient's toes often show splaying or divergence. Patients may describe the feeling of a "lump" on the foot bottom or a feeling of walking on a rolled-up or wrinkled sock. Clinical examination with medial and lateral compression may reproduce the painful symptoms with a palpable "click" on interspace compression (Mulder sign).

Treatment

Management of patients diagnosed with Morton neuroma typically starts with conservative approaches, such as the use of metatarsal pads in shoes and orthotic devices that alter supination and pronation of the affected foot. These approaches try to reduce pressure and irritation of the affected nerve. They may provide relief, but do not alter the underlying pathology. There is scant evidence to support the effectiveness or comparative effectiveness of these practices. In a case series, Bennett et al (1995)
evaluated a 3-stage protocol of "stepped care" through which private practice patients (N=115) advanced from stage I (education plus footwear modifications, and a metatarsal pad) to stage II (steroid injections with local anesthetic or local anesthetic alone), and into stage III (surgical resection) if stages I and II were not relieved within 3 months. Overall, 97 (85%) of 115 patients believed that pain had been reduced with the treatment program. However, 24 (21%) patients eventually required surgical excision of the nerve, and 23 (96%) of them had satisfactory results.

Ablation Techniques
Several minimally invasive procedures to treat refractory Morton neuroma are aimed at in situ destruction of the pathology: radiofrequency ablation (RFA) and cryoablation (also known as cryoneurolysis, cryolysis, cryoanalgesia). RFA uses heat generated by an electrode that conducts electromagnetic energy into a tissue or lesion to denature proteins and destroy cells. RFA is used to ablate a wide range of tissues or lesions, including osteoid osteoma; cardiovascular system pathologies; cervical pain syndromes; liver, lung, and other cancers; and varicocities. Cryoablation uses coolant to chill a cryoprobe to temperatures below -75°C, which when inserted into a lesion, freezes and kills the tissue. It has been used to treat Morton neuroma, other chronic nerve pain syndromes, and conditions for which RFA has been used.

This review primarily focuses on evidence for the use of RFA and cryoablation on painful neuromas, with emphasis on Morton neuroma and the comparative effectiveness of these less invasive therapies with open surgical resection of the nerve pathology.

Summary
Morton neuroma is a common and painful compression neuropathy of the dorsal foot. Morton neuroma has been treated with conservative measures (pads, orthotics, drugs) or surgery. Minimally invasive procedures, including radiofrequency ablation (RFA) and cryoablation, have been investigated as alternatives to open surgery. These ablation methods have also been used to treat other peripheral neuromas.

For individuals who have Morton neuroma who receive RFA, the evidence includes case series. Relevant outcomes are symptoms, functional outcomes, and treatment-related morbidity. Three case series identified reported outcomes for RFA to treat Morton neuroma. The body of evidence is highly heterogeneous regarding RFA protocols, prior conservative management, patient characteristics, follow-up durations, outcome measures, and reporting of outcomes. Variable proportions of patients require surgery after RFA, making the benefit of RFA for avoiding more invasive treatment uncertain. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have Morton neuroma who receive cryoablation, the evidence includes case series. Relevant outcomes are symptoms, functional outcomes, and treatment-related morbidity. Only 2 retrospective case series on the use of cryoablation to treat peripheral nerve pain were identified in a literature review. The case series were heterogeneous regarding cryoablation protocols and length of follow-up. Outcome measures did not provide information on functional end points. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have peripheral neuroma(s) other than Morton neuroma who receive ablation, the evidence is very limited: no published literature was identified. Relevant outcomes are symptoms, functional outcomes, and treatment-related morbidity. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
</table>
New references added from BCBSA National medical policy. Background and summary clarified.

Information Pertaining to All Blue Cross Blue Shield Medical Policies
Click on any of the following terms to access the relevant information:
Medical Policy Terms of Use
Managed Care Guidelines
Indemnity/PPO Guidelines
Clinical Exception Process
Medical Technology Assessment Guidelines

References